CONTENTS

TITLE i
ABSTRACT ii
ACKNOWLEDGEMENTS iii
CONTENTS iv
LIST ABBREVIATIONS viii
LIST OF FIGURES x
LIST OF TABLES xii
LIST OF PLATES xiii

CHAPTER ONE: INTRODUCTION 1

CHAPTER TWO: LITERATURE REVIEW 6
2.1 PHA and its importance 6
2.2 Standards development for biodegradable plastics 7
2.3 Description of current test methods 10
2.3.1 Screening tests for ready biodegradability 10
2.3.2 Tests for inherent biodegradability 13
2.3.3 Tests for simulation studies 15
2.4 Other methods involving assessing of polymer biodegradability 15
2.4.1 Petri dish screen 15
2.4.2 Environmental chamber
2.4.3 Soil burial test

2.5 Choice of environment

2.6 Degradation of biodegradable polymer through different disposal routes

2.6.1 Composting
2.6.2 Sewage sludge
2.6.3 River water
2.6.4 Seawater
2.6.5 Freshwater
2.6.6 Lakewater
2.6.7 Soils

2.7 Rationale behind the research of biodegradability of polyhydroxyalkanoates

2.8 Objective of this study

CHAPTER THREE: MATERIALS AND METHODS

3.1 PHA production

3.1.1 Bacterial strain
3.1.2 Stock culture storage
3.1.3 Media and growth condition
3.1.4 Palm kernel oil
3.1.5 Saponification of PKO
3.1.6 Extraction of PHA
3.2 Biodegradability testing methods in soil
 3.2.1 Natural environment 31
 3.2.2 Enclosed environment 33

3.3 Studies of soil condition for biodegradation
 3.3.1 Moisture content of soil 35
 3.3.2 pH of soil 35

3.4 The Analytical Studies of Biodegradability
 3.4.1 Gross weight loss 36
 3.4.2 Surface morphology of PHA
 3.4.2.1 Phase contrast microscopy 36
 3.4.2.2 Electron microscopy 37
 3.4.3 Carbon dioxide evolution 37
 3.4.4 Characterization by Infrared Spectrophotometry 40
 3.4.5 Characterization by Gas Chromatography 41

CHAPTER FOUR: RESULTS AND DISCUSSION

4.1 Studies of soil condition for biodegradation
 4.1.1 Moisture content of soil 50
 4.1.2 pH of soil 51

4.2 The Analytical Studies of Biodegradability
 4.2.1 Gross weight loss 52
4.2.2 Surface morphology of PHA
 4.2.2.1 Phase contrast microscopy 57
 4.2.2.2 Electron microscopy 58

4.2.3 Carbon dioxide evolution 63

4.2.4 Infrared spectrophotometry 67

4.2.5 Gas chromatography 73

CHAPTER FIVE: CONCLUSION 80

REFERENCES 84