Chapter 3 System Architectural View and Analysis

3.0 Architectural View
The customisable production tool will be developed as a kind of layered system
with the application systems on the top and the component system underneath as shown in

Figure 3.1 [Jacobson, 1997]. A layered archi ¢ is an architectural style that simplifies

system evolution and enables sub ial reuse of comp [Jacobson et al., 1997]. The

system develop of this proposed isable production planning tool is also based
on the technique of software modelling developed by Ivar Jacobson [Jacobson et al.,
1992]. The approach to this system will use Jacobson’s use-case-driven Object-Oriented
Software Engineering (OOSE) modelling notation and method [Jacobson et al., 1992]. The
OOSE notation also conforms to the Unified Modeling Language (UML), [Booch et
al.,1997] features. OOSE approach defines systems in terms of several object-oriented
models which are the requirements model, the analysis model, the design model, the
implementation model and the test model, which will be explained in the later section. This
method is chosen as it produces significant levels of software reuse in the architecture and
design of the software systems. Besides, this will also lead to a smoother implementation

process and testing which ultimately produces a better and more maintainable system.

Figure 3.1 A Layered Archi e of Application and Comp t S

Application
Systems
. =
Business- A
Specific e
Middleware Component
Systems
System
Software

3.1 Object-Oriented (O0) Software Engineering Process

Object-orientation is an important approach to analysing problems, designing

systems and building solutions. It is the process of sy ically building sy using

objects, types and classes. Through object-orientation, systems are designed in a more
modular and extensible way enabling them to evolve more readily as user requirements
changes. These software systems are composed of objects which have both data (state) and
functional (behavioural) components. The ability to combine data structure and behaviour
in a single entity is also known as encapsulation or information hiding, which can prevent
a program from becoming so interdependent that a small change has massive ripple effects.
These objects which can communicate with one another via messages, are categorised into
classes with similar properties. Classes of these objects are themselves related in a
hierarchy and therefore inherit general features from classes that are above them which are

also known as super classes.

54

Through the use of objects, classes and message passing, object-orientation
provides a more modular way of modelling problems. This in turn translates into clearer
designs and ultimately leads to clearer implementations enabling better control of
complexity with a significant reduction in maintenance costs.

Besides, inheritance provides a powerful means of reusing and creating specialisations as
necessary. Specialisation refers to the fact that the subclasses refine or specialise the

1 Buildi

p By designing and g Sy from existing reusable class hierarchies,

the software engineering process can be reused from tried and tested classes perfected

through use in previous developments. The benefits of OO engineering process which can

also date the d ics of a changing envi are very suitable for the

development of a isable OO tool for production planning b as requi
evolve over time especially so in the manufacturing industry, OO approach focuses first on
identifying objects from the application domain, then fitting procedures around them, thus

retaining the underlying framework of the application domain. The following sections will

show how this OO approach is used to do the analysis and design of this customisable OO

production planning tool.

3.2 Object-Oriented Development Life Cycle

The development of this production planning tool uses an OO software
development life cycle which is incremental and iterative in nature. Figure 3.2
[OMG,1992a] shows the evolutionary development life cycle which provides the best basis)
for OO analysis and design. Analysis is done in a top-down manner which results in a set

of fairly high-level classes and the interactions between these classes. As the analysis

55

merges into design, lower-level class diagrams will be used to illustrate more internal
details of the classes. The design cycle consists of a two-stage process that is the class
design and application design. The class design involves developing functionality
associated with specific classes and developing class hierarchies through abstraction of
common data and function thus creating more generic classes. The class design involves
both bottom-up and top-down procedures. The main purposes of this class design are to
design for reuse and to design in a highly modular way. The process of identifying
common behaviour or abstraction and specialisation creates better reuse possibilities. The
application design is then achieved through bottom-up by connecting instances of the
design classes so that they interact with each other resulting in the solutions to the stated
requirements.

The main feature of this incremental model is that the design and code loop in the
center provides a basis for fast innovative code creation. This produces quick versions of

the production planni pplication which can be evaluated and fed back into cycle for

further design which is the essence of the prototyping life cycle. This rapid prototyping is a
highly iterative process which can be used to reduce risks in software development.
Implementation of classes then takes places in parallel with much of the design work.
Testing procedures then lead to results which must conform to the specified requirements
otherwise they will be fed back for redesign and analysis. This process thus uses an

incremental and iterative cycle which will be refined until all requirements are met.

Figure 3.2 Overview of the Production Planning Devel Cycle [OMG. 1992a]

@ @ [Test

3.3 System Development Activities

The OO system development for this isable production pl

tool, as

mentioned previously is based on the OO software engineering method modelled by
Jacobson, 1992 [Jacobson et al., 1992]. This method encompasses analysis and design
producing five different models from abstract to building a concrete system. Figure 3.3

[Jacobson, 1997] shows a summary of the development activities. The object models are :

e The requirements model — which captures the functional requirements through the

use-case model.

e The analysis model — whose aim is to develop a sound, stable and extensible object

structure.

o The design model — which refines the object structure to suit the current

implementation environment.

e The implementation model — which is used in implementing the system.

e The test model — to verify the system.

Figure3.3 S

y of the Devel Activities

System development

Abstract Concrete
""" H
|
i
Requirementy | Use Analysis Design Implementation Test System
case
—> | model model model N model / Code mode
1
H
.< JI
Requirements Construction Testing

Capture

The different models and the elements defined in the respective models are

connected to each other through traces shown in the dotted arrows in Figure 3.3. The figure

also shows a summary of the activities in each of the phases of the development mentioned

and their respective models of each phase in the whole development process. The links

allows the developer to track any

h

from requi

58

to the different

models all the way to coding. This will help in the analysis on the impact of any changes
to be done. The system starts from the abstraction of the initial classes with the
requirements defined in the analysis phase. During this phase, the essence of some domain
within the real world is abstracted to provide a model from which the planning tool will be
ultimately developed. In this case, a high-level use case model is used to capture the

s ing requi for the isable production planning tool. It identifies scenarios

in which the planning processes are activated and controlled. This leads to the analysis
model which then identifies the objects and classes based on the requirement specifications
about what the system will do. The use cases are refined and made more detail and robust.
The design model shows the interaction between the classes and subclasses which further
refine the analysis model to the actual implementation environment. Detailed interaction
diagrams are developed in the application design to show how the objects will carry out
their responsibilities through the respective functions or methods to be implemented.
Further stages involve developing the analysis, design and implementation models
iteratively when more details are uncovered until the system development is complete with
the testing model verified. The incremental and iterative analysis and design methods for

the customisable production planning tool will be further explained in more detail in the

next section.

3.4 Requirements Model Through Use Case Model

The develop of the isable production planning tool begins with a high-
level use case model to capture the system’s functional requi Figure 3.4 ill
the use case model for the isable production pl tool. The scenario shows two

59

actors, namely the manager and planner who are both directly involved in production

planning.

Figure 3.4 Use Case Diagram for Production Planning Tool

Plan Production

™~

Manager
—
>
Planner

Schedule Production

The use case model represents a high-level production plan that is controlled by the
planning manager. For this plan to materialise. inputs to the plan must first be sorted out.
These inputs are the components of the production plan. Figure 3.5 shows the components
of the overall production plan. The components consist of inventory, demand order,
forecasting, backlog and shipment. These inputs are all netted into the production plan ~
together with the management policies before the plan is checked against sufficient rough
cut capacity planning (RCCP) in order for production to proceed. The RCCP shows the

resources such as machines, manpower and work hours that are available for the realisation
60

of this plan. This ultimately shows how much capacity is being utilised. The manager will
have to consider all these components needed to plan for production to be executed by the
planner. In the mean time, the planner’s role is to check the capacity of the plant to ensure
that there is sufficient capacity for the plan to proceed. This is shown in the planner’s use
case. If there is readily available capacity, the planner will then proceed with the
production plan. He will then schedule the production quantity according to the plan.
Otherwise, the planner will need to refer back to the planning manager about the

insufficient capacity and the latter will need to make whatever adjustments to scale down

the production plan.

61

Figure 3.5 Components of a Production Plan

) . Demand
Forecasting Order Inventory

Production
Plan

Backlog Shipmem / Delivery Dates
FOTD

Verify

Capacity "
Plan Capacity
RCCP Utilisation

In short, the use case model defines what the system should do for the users. The model
specifies precisely how responsibilities are allocated to actors and their interactions with
instances of the use cases. It models the aspect of the manufacturing domain that concerns
the users and solves the production planning problem. The next section looks into the

analysis model of this system followed by the design and the architecture of the production

planning tool.

3.5 Analysis Model

The analysis model is a model of the system design at a high level, ignoring the
specific low-level details of the target implementation environment. The analysis process
evolves in a systematic model building that is based on the component systems of the

planning tool. This analysis model is built upon a widely reusable structure that is robust

when faced with the ever changi i within the

q ing envir A

good application system with a flexible and scalable architecture for this production

planning system is the aim of this object-oriented software engi ing process. To achi
this, the analysis model considers how modifications will affect the system. In this stage,
the use cases are refined and made more detailed. Each part of the system undertakes its
responsibility according to the use case model represented by each component.

The model makes use of three types of objects to elaborate each use case and their
respective interactions with the component systems. These analysis types represent an
abstraction of classes in the system’s implementation. Figure 3.6 shows three different

kinds of analysis types (BCE) [Jacobson et al., 1997] which are :

i) Boundary (B) or Interface object which handles communication between
the system and its environment.

i) Control (C) object performs use case specific behaviour which controls or
coordinate other objects.

iii) Entity (E) object which holds information about the system, often used to

model business objects.

Figure 3.6 Three different kinds of analysis types (BCE)

OO NG

Boundary/ Control Entity
Interface

These three distinct types, BCE help in developing a more robust structure in this analysis

model. In the develop of this production planning tool, every component system is

represented by its own respective use case model, which in turn has its own boundary,
control and entity types to illustrate how objects perform the use case functions.

The analysis model gives shape to the production planning system’s archi

This model is made up of the analysis types and subsystems including their relationships
through traces. A dynamic analysis model can lead to an ideal design and a smooth
implementation environment. The problem domain when clearly stated in this analysis
model will lead to a development structure that allows the system to evolve when
requirements are added in the later part of the object-oriented software engineering cycle.
In this planning tool, for each use case, there is a collaboration diagram that illustrates how
objects perform the use case. The use case model is traced by a dash line between the use
case and the BCE types.

There are three specific use cases namely, plan production, check capacity and schedule
production. The primary modelling activity during this analysis phase is to identify the
various types and their relationships and to allocate responsibilities to these types. The
responsibilities need to be allocated so that all the steps in instances of the use case are
performed by interactions between the objects. A collaboration diagram is used to show

these interactions in this analysis model.

3.5.1 Plan Production Use Case

The collaboration diagram to trace the Plan Production use case model is shown in
Figure 3.7. The use case model is traced to the analysis model with a dashed line. The
boundary object which is the Manager Interface interacts with the system to plan for
production. The control object, Regulate Order, carries out the use case specific behaviour,
which in this instance, is to confirm customers’ orders and ensure that the production plan
is sufficient to meet those orders. This control object interacts with the entity objects so
that an accurate plan can be drawn up so as to fulfill all orders since the plan is actually
controlled by the customers’ demand order. The entity objects in this case are the four
objects in the system which are Backlog, Shipment, Inventory and Forecast. Backlog takes
into account those orders which have not been delivered. This could be due to delay in
production or insufficient resources. Shipment includes when goods must be shipped after
an order is taken from the customer. This delivery date is important so that they will be no
delay to the order. Inventory is needed to buffer any sudden demand and production loss so
that there will be no disruption to the production plan. Forecast will enable the system to
predict the demand orders so that production goes according to predicted future demand

orders. All the entity objects are important inputs to produce an exact production plan.

65

Figure 3.7 A collaboration diagram to trace the Plan Production Use Case Model

<<analysis model>>
<<use case model>>

Regulate
Order

Plan Backlog
Production

Manager
andger Interface

Shipment

G O

Inventory

Forecast

3.5.1 Customisation Through Variation Points

In planning for production, the system allows the manager to set a production
environment of his choice. In this scenario, there are three production environments
namely, Make-To-Order (MTO), Make-To-Stock (MTS), and Assemble-To-Order (ATO).
MTO mode is chosen when the user plans for production according to customers’ orders
which are usually given in advance before production starts. Whereas MTS is chosen when
a plant wants to shorten the delivery lead time by producing with increased inventory.
Unlike ATO, is for the production of semi-finished products. The customisable planning
tool allows the manager to choose from one of the three production environments in a
certain production year which can be set at any date. The three modes of production are
shown as three variant points in the collaboration diagram in Figure 3.8. indicating

specialisation according to the three different environments. Spécialisation technique is a

66

form of <<generalisation>> that refers to the variability mechanisms [Jacobson et al.,
1992; Griss, 1995d]. In this instance, the variability mechanism use extension points to
express three variants attached at a variation point in the Adapt Plan Production
Environment use case and object components. An interface will be provided for the

manager to select which environment he so chooses at that particular production period.

Figure 3.8 A collaboration diagram to trace the Plan Production Environment Use
Case Model

<<analysis model>>
<<use case model>>

Adapt Environment

<<trace>> @ é Plan
> Manager
Plan 1{MTO} /
< tents>>

Interface
Plan 2 {MT:

Adapt Plan
Production Environment
.
<<egtends>>

{MTO} {MTS} ({ATO}

Plan 3 {ATO}

Another customisable feature of the planning tool is the calculation of inventory <
and forecast which are entities of the production plan. The manager can calculate both the
entities according to their own formulae through another interface where he can customise

his own inventory and forecast. Another two variation points will be included into the plan
67

production use case as shown in Figure 3.9. The two variations for Inventory and Forecast

are Calculatel and CalculateF respectively. The variability is again expressed as

<<extensions>> that allows users to customise their own calculation of inventory and

forecasting methods.

Figure 3.9 A collaboration diagram to trace the Plan Production Use Case Model

<<use case model>>

with Variation Points

<<analysis model>>

Plan
Production
.
lanager

< [extehds>>

Inventory Forecast

Regulate Order

Manager
Interface

Inventory

Calculatel

Forecast

<<extends>>

Backlog

CalculateF

68

3.5.2 Check Capacity Use Case

A collaboration diagram is again used to trace the Check Capacity use case model.
Figure 3.10 shows the analysis model to trace this particular use case. The use case
instances interact through the BCE types in order to verify the rough cut capacity planning
(RCCP). The control object, Check RCCP checks the actual capacity against the available

capacity so as to determine whether there is sufficient capacity for production to proceed.

Figure 3.10 A collaboration diagram to trace the Check Capacity use case model

<<analysis model>>
<<use case model>>

Check RCCP
Check _ssmcezy @/ O
Capacity Actual
P \
lanner Planner
Interface
Available

The boundary object which is the Planner Interface, handles communication between the
system and its surrounding which is the planner who is given the access to interact with the
capacity planning (RCCP). The control object. that is Check RCCP carries out the use case
specific behaviour, which in this instance, is to check for capacity. The entity objects in :
this case are the two objects in the system, Available and Actual capacity. The Available

entity defines the capacity that is available in terms of resources. Unlike the Acrual entity.

69

which shows the actual capacity needed for this plan to be carried out. If the Acrual
capacity is below the Available capacity, then this will result in the plant operating under
capacity, thus resources are under utilised. This is an indication for the plant to either cut
down their resources or increase production accordingly. If there is readily available
capacity, the planner will then proceed with the production plan. Otherwise, the
adjustments must be made to scale down the capacity plan. The dashed line is a trace

between the use case and the analysis types.

3.5.3 Schedule Production Use Case

In this use case, the planner again interfaces with the system after the RCCP has
been verified against the plan and the plan now is ready to be executed. The control object,
which is the Plan Schedule now determines the scheduling activities. The entity objects are
represented by the schedule, type of product and the production week. The production
schedule will run according to the plan. The production plan is done in weeks and in each
production week, the schedule is again different for the different types of products to be

produced. These products are in i to the * d

d for the various types
of products. The planner will schedule the production based on the control object which is

the plan as shown in Figure 3.11.

70

Figure 3.11 A collaboration diagram to trace the Schedule Production use case model

<<anal model>>
<<use case model->

Plan Schedule
Schedule

c _Stracery, M Schedule
Production
lanner Planner \
Interface
Pro

Week

uct

