Chapter 5 Implementation

5.0 Implementation Model

The impl ion model ists of the source code, classes and the necessary
documents based on the design of the system. An object-oriented language, Java 1.2.1, is

used to write the source code of the customisable planning tool. Java is chosen as it

supports psulation, classes, passing as well as inheritance. It also supports
superclass method overriding and explicit access to superclass methods. Java uses the
keyword extends for class inheritance and also a package construct with an import
statement, which allows the grouping of related classes that have convenient access to each
other. It also provides an interface construct, that enables classes and their descendents, to
define and implement several interfaces as a set of methods. An interface can then be used
by other classes as a form of contract. Besides, the declarations, public, private and
protected provide visibility and access control between classes and packages.

Since Java is a fully object-oriented language, it makes the transition from design to code

much more direct.

5.1 Application and Component Systems

The impl ion process conti from the top-down design of the

application systems that are traced to the component systems, which in short is

pl ing the archi as a layered system. These are represented by the business

entities which form the objects found in the main menu interface. Figure 5.1 shows the

97

main interface of the implemented application systems. Appendix B shows in more detail
the objects and classes which are part of the component systems that are hidden from the
main screen. The design model that is traced to the use case model which consists of plan
production, check capacity and schedule production use cases are integrated into the
application subsystems. Each of the use cases is implemented with the priority to deliver
the most important functionality first, for instance, to check for capacity before a

production plan can proceed. Each increment is thus developed as one iteration through the

software i ing process. On pletion of an i , the next set of use case is

then refined and implemented.

All the entry screen classes for example Customer User Interface, Product User
Interface, Plan User Interface, etc. have been derived from the swing class JDialog. The
main screen contains a main panel in the center. Interfaces which contain JTable are
implemented as panels (derived from javax.swing.JPanel) with JTables in it and form part
of the data retrieval interface. In response to the menu events in the main menu, the
corresponding panels will be added to the main panel. All the user interface classes used
the DataManager class to access the database. For each action, the access is allowed

according to the access restrictions set for the actor.

98

Figure 5.1 Main Screen of the C isable Production Pl ing Tool

I3 Production Planning
Flle Plan

5.2 Customisation

The customisation part of the software as mentioned previously were implemented
as variability points. The features of customisation include the three types of production
environments which are Make-To-Order (MTO), Make-To-Stock (MTS) and Assemble-
To-Order (ATO). Apart from these, users can also customise the calculation of their own
inventory and forecast methods respectively. then the values will be passed to the
respective inventory and forecast columns. To further secure the system, different levels of

access can also be set for different users.

99

5.1.1 Production Environment

The three types of production environments which are Make-To-Order (MTO),
Make-To-Stock (MTS) and Assemble-To-Order (ATO) are areas of customisation that
allow the user to choose from. The way this is done is that in the ProdYear table there is a
field called Prod_Env. This field stores the environment name like MTO, MTS and ATO.
The formulae to calculate the Plan is hard coded in the program as there are only three
modes of environments. Appendix C shows the help file that contain the explanation for
the formula used for the respective production environment. The user can select from the
three environments when he starts a production year. He can also change the environment
from one to another at any time. Then the environment name will be stored in the database
table ProdYear against the ProdYear_id. This name will be fetched by the program when
calculating the plan function and it will calculate according to the corresponding formula
for each of the production mode. Below shows an extracted part of the code for the

impl ion of the production envi Whereas Figure 5.2 shows the customised

production environment ~ with their respective production years which has been

implemented.

100

Figure5.2 C isable Production Envir t

[Production Yzal
Enter the start date and end date of his pmﬂu:llonvw

Start Date mmiddiyyyy [10115/2001 ‘
.?;1

1oduction Years

06/01/2000 12/3112000 make-to-stock
meie-io-ondet 12122002 111102003 | assembledo-or
End Date mmiddyyy [AETCROR ‘02012002 00302002 | make-o-stock
assemble-to-order 1011512001 06/30/2002 assemble-to-or.
Plan Environment |make-to-order X 4 %

5.2.2 Inventory and Forecast

Inventory and forecast fields and the formulae to calculate them are entered by the
administrator or manager. Each time when the user starts a production year, he has to give
the forecast and inventory details. These details will remain the same throughout that
production year. The field names and the formulae are tokenised (breaking statements into
individual pieces) using coma (,) and stored in a file in the format
<ProdYearld>.Inventory and <ProdYearld>.Forecast. The user is supposed to fill in
the fields which he has defined in the file, when he adds a Plan record. The program will
prompt the user to enter the field values for the field names which he had entered at the *
time of a new production year. The program will calculate the inventory and forecast
according to the formulae given and store it in the corresponding fields in the Plan Detail

class. The actual values of the custom fields will be stored in a CustomTab class for future
101

modification. The calculation is being done using a third party package which is known as
eval jar , a java archive compressed file, meant for computation purpose. The evaluate()
function takes an arithmetic expression for example: (41/2)*(3+49) as the parameter and
returns the result. The result will automatically be passed to the inventory and forecast
columns inside the PlanDetail class. Whatever that is decided will be fixed throughout the
production year. Figure 5.3 shows the implementation of the customisation of inventory.
The user can key in any number of fields required for the calculation of the inventory and

then formulate a function in arithmetic expression based on the number of fields given.

Figure 5.3 Customisation of Inventory

FieldName 1 m il

Enterthe no of inventoryfields: FieldName 2 ; F rder units 2
FieldName 3 Ferecme units 3 z
oK l Cancel | Imenmy = ; Fn’:ﬂ)'n? 5 eg: (11+12)%(13+14)

Undai; I : Deleie“ 1””0&1’"}“ |

The customisation process for forecast method is similar to the inventory method. .
Figure 5.4 shows the implementation of the customisation of forecasting method. The user
can also key in any number of fields required for the calculation of forecast method and
then formulate a function in arithmetic expression based on the number of ficlds given.

102

Figure 5.4 Customisation of Forecast

FleldName 1 Liemand 1

FleldName 2 Fn of customers rd

Enterthe no of forecast fields: -
FieldName 3 A Felecllve unit (&)
D FieldName 4~ forice o

IE .fﬂl Forecast = | TRRGEL) eg: (f1+2)(13+14)

i’ BB ol

In addition, jfreechartjar, which is another third party package is also used for
displaying the graph for the year-to-date production plan. The graph displays the total
production yield against the total production planned for the whole production period.

Figure 5.5 shows the total Year-To-Date values of planned and actual production figures.

productic: [N v

Line Chart

2250+ o

2000+ / N

1750+ / i
5‘5«\ / -
%!250‘ / WPan
l“m WY

750+

l Cancel Bhow Charl ‘

Figure 5.5 The Total Year-To-Date Production Values

5.2 Data Storage Implementation

The storage management is implemented through two parts. The first being the

p ion of the database design and the second part is the data retrieval interface.

The database is a three-tier setup. The client interface acts as the first tier and the MS

Access database acts as the third tier. ion with the d is done t} h the

g

SQL. For connectivity to the database, we use a JdbcOdbcDriver. A class DataManager
implements the middle-tier features. It accesses the database and formats the results to
display in the client side. The DataManger class fetches the results from the database and
converts them into the form of java.util.Vector to display it in the client interface. Vector
is a class which can store any number and any kind of objects in it. It is like an array which

104

dynamically increases its size. When a select query is executed, the DataManager class
takes all the results from the table and adds each row information in the form of a vector,
so as to display it in the JTable. As most of the interfaces in the client side consist of
JTable . returning the results as vector is a good choice. The JTable has a constructor
which takes Vector as the parameter in the place of tuples. The database connection
through the DataManager class is to the datasource is as follows :-

Cl

forName("sun.jdbc.odbe.JdbcOdbeDriver");
DriverManager.getConnection("jdbc:odbe:Production”);

5.3.1 Login Access

Login access to the database is restricted through access privileges set by the
administrator or manager. The manager must first login as an authorised user. Figure 5.6
shows the login window into the system. The manager can also grant and deny permissions

to perform any action in the system.

Figure 5.6 Login Window

105

A RegUserUI class is coded to show the different levels of users’ access into the

database. Below is a sample code of this class. Figure 5.7 shows the interface for

RegUserUl class whereby only the manager can set the different levels of access

different users.

packag

import
import
import
import
import
import
import

import

public

Vector

e produi;

java.awt.*;
java.awt.event.*;
javax.swing.*;
javax.swing.event.*;
javax.swing.border.*;
java.text.*;
javax.swing.table.*;
java.util.*;

class PermissionUI extends JDialog implements ActionListener{
public ProductMan parent;

public JTable table;

Vector vData;

SimpleDateFormat dFormat;

public PermissionUI (ProductMan parent) !
super (parent, "Permissions");
this.parent = parent;

getContentPane () .setLayout (new BcrderlLayout()):

[111177111111117111171777 DATA COLS
vCols = new Vector();

for(int i=0;i<9;i++){

vCols.addElement ("Add");
106

for

vCols.addElement ("Mod") ;
vCols.addElement ("Del");

vCols.addElement ("View");

}
Vector vData = null;
tryf
vData = parent.dbMan.getAccessDatal();
}

catch (Exception e) {

e.printStackTrace();

ListModel lm = new AbstractListModel() {

String headers(] = {"Clerk", "Planner", "General"};
public int getSize() { return headers.length; }
public Object getElementAt (int index) {

return headers(index];

107

Figure 5.7 Permission for Use to Different Users

=
pamne] [P P F ClCCir M FIF R CITICID
rroer ror

5.4 Test Procedures

The customisable production planning tool is tested with the intention of
verification and validation. This is to ensure that this customisable software conforms to its
specifications and have met all the functional specifications set out from the start as well as
any added requirements during the development process. In the development of this
customisable tool, the test model here is used to confirm the validity of the other models
produced during software engineering. The testing process is done through each use case
instances. The instance is an object which has behaviour and state and the outcome of this
test execution is a test result. The test result will then validate the consistency of each

model and its mapping to the other models. Testing also includes the subsystems through

to the whole layered system and is carried out in all iterations from as early as the design

phase as this helps refine and better understand the requirements. In this case testing is

108

started with subsystem testing and then continued with integration testing, function testing
and finally system testing which in short, refers to the bottom-up testing approach.

In object-oriented paradigm individual operations or subsystems are regarded as
components. They are tested as part of the class and the class or an instance of a class
(object) then represents the smallest testable unit or module. A class and its operations is
the module most concentrated on in the object-oriented environment. From here it
expands to other classes and sets of classes. Object-oriented test cases need to concentrate
on the states of a class. To examine the different states, the cases have to follow the
appropriate sequence of operations in the class. Class, as an encapsulation of attributes and
procedures that can be inherited, thus becomes the main target of object-oriented testing. In
this customisable planning tool, all the classes within the component systems were tested
accordingly. The state of each class is tested according to the sequence of operations
defined in the respective classes. The customisable features such as the variation points
were given more emphasis as this involves perceiving clients’ input actions and operations.

The overall operations of a class were tested using the ional white-box method:

and techniques such as message passing, loop and data flow. White box method is most
widely utilised in these subsystem testing to determine all possible paths within the
application system so as to execute all loops and to test all logical expressions. Because of
inheritance, testing individual operation separately or independently of the class would not
be very effective, as they interact with each other by modifying the state of the object they
are applied to [Binder, 1994]. Since there is interaction between objects, the tests were
designed to test each new context and re-test the superclass as well to ensure proper
working order of the objects.

109

As use cases are basically descriptions of how the system is to be used, therefore
each of the use cases was tested. In this function test process that is black-box in nature,
real user data were used to do the testing of the overall functionality of the customisable
production planning system. This includes testing of all the interfaces and the interaction
of the actors with the use cases. The specifications for this function test were very detailed

as every aspect of the software system was being tested. The system’s functions were

1 d

as new requi were added according to what needed to be improved.
Since the tests were iterative from design to implementation, each phase is refined until all
the customised functions worked according to their actual functionalities.

The final stage of the test process was integration and system testing for the whole
layered system. This type of test involves examination of the whole customised system
which includes the software components, all the hardware components and any interfaces.
All the use cases were integrated and their interfaces interact so as to complete the
workings of the entire system. The whole layered system is checked not only for validity
but also for verifying that it has met all the objectives and functionality of this

ble production planning tool meant for the manufacturing sector.

A help file is also generated using MS Help Workshop, a software available from
the internet, to display a comprehensive help file for users’ reference. All the explanations
are given about the workings of the production planning system that will help user

understand the functionality of this software. Appendix D shows a print out of the help file.

110

