

DIAMONDLIKE CARBON THIN FILM DEPOSITION USING A RF PLANAR COIL INDUCTIVELY COUPLED PLASMA SYSTEM

BY

LIEW WAI SOON, B. Sc. (HONS.)

DEPARTMENT OF PHYSICS

UNIVERSITY OF MALAYA

DISSERTATION PRESENTED FOR THE
DEGREE OF MASTER OF SCIENCE
UNIVERSITY OF MALAYA
KUALA LUMPUR

2001

Contents

			pag	
Abstr	Abstract			
Abstr	Abstrak .			
Acknowledgement				
Chapter 1: Introduction				
1.1	Graph	ite, diamond and diamondlike carbon	1	
1.2	Plasm	a synthesis of diamond or diamondlike carbon films	4	
1.3	Some application of CVD diamond and diamondlike carbon films		12	
	1.3.1	Electronic packaging	12	
	1.3.2	Cutting tools	12	
	1.3.3	Surface acoustic wave devices	13	
	1.3.4	Radiation detectors	14	
	1.3.5	Effective negative electron affinity	14	
	1.3.6	Protective coating	15	
	1.3.7	Anti-stick coating	15	
1.4	Inductively coupled plasma (ICP) system		15	
1.5	Planar coil configuration			
1.6	Diamondlike carbon (DLC) thin film coating with RF ICPs		19	
1.7	1.7 Objective and the organization of this thesis		19	
Chapt	Chapter 2: System Descriptions and Instrumentations			

			page	
2.1	Induct	tively coupled plasma system (ICPs)	20	
2.2	Reactor chamber			
2.3	Vacuum system and pressure measurement system			
2.4	RF power and matching network			
2.5	The gas inlet system			
2.6	Diagn	ostic system	31	
	2.6.1	Voltage measurement	31	
	2.6.2	Current measurement	35	
	2.6.3	CCD based spectroscopic system	36	
2.7	Surfac	ee analysis instruments	36	
	2.7.1	SEM and EDAX	36	
	2.7.2	Micro-Raman system	39	
Chapter 3: Discharge Characteristics of ICP System		Discharge Characteristics of ICP System	43	
3.1	Overv	iew	43	
3.2	Experi	imental observation of E to H mode transition	45	
3.3	Effect	of operating pressure on E to H mode transition	60	
3.4	Discharge of hydrogen and methane admixture			
3.5	The study of induction heating effect of silicon substrate			
	in hydrogen and methane discharge		67	

			page
Chap	ter 4: Plasma Enhance	ed Chemical Vapour Deposition of	
	Diamondlike Ca	arbon Thin Film	72
4.1	Plasma enhanced chem	ical vapour deposition	72
4.2	CVD diamond / diamon	ndlike carbon films	74
4.3	Nucleation and growth	of diamond / diamondlike carbon films	75
4.4	Substrates for CVD dia	mond / diamondlike carbon films formation	77
4.5	Sample pretreatment		
4.6	PECVD of diamondlik	e carbon films on silicon substrate	81
	4.6.1 Substrate pretre	atment and cleaning	81
	4.6.2 Deposition meth	nod and procedure	82
4.7	Effect of percentage of	methane on DLC thin film coating	83
	4.7.1 Results		85
	4.7.1.1 Sample S	Sil prepared with 0.8% methane Gas	85
	4.7.1.2 Sample S	Si2 prepared with 1.0% methane Gas	85
	4.7.1.3 Sample S	Si3 prepared with 3.0% methane Gas	86
	4.7.1.4 Sample S	Si4 prepared with 5.0% methane Gas	86
4.8	Effect of substrate pretreatment		87
4.9	Effect of the induction heating on PECVD diamondlike carbon coating 8		
4.10	Discussions		

			pag
Chapter 5: Conclusions and Suggestions for Future Work		96	
5.1	Conc	clusions	96
5.2	Suggestions for future work		98
Refer	ences		99

Abstract

I

Abstract

A RF planar coil inductively coupled plasma system (ICPs) is setup for this project. The system is powered by a 13.56MHz, 550W, $50\,\Omega$ RF generator. The RF power is transferred to the plasma via a planar induction coil. The impedance matching circuit consists of an air-core step-down transformer and a tunable vacuum capacitor. The typical E-H mode transition which is distinctive to the ICP has been observed in argon plasma, hydrogen plasma and hydrogen-methane admixture plasma. The studies carried out include the observation of intensity of light emission from the plasma, the power transferred at different pressures, the concentration of plasma with glass funnel, the effect of methane present in hydrogen plasma and the induction heating effect. These studies are important for the application of the system for plasma enhanced chemical vapour deposition (PECVD) of diamondlike carbon (DLC) films deposited on silicon substrate. The effect of the percentage of methane, the influence of the pretreatment using diamond paste on the substrate and the induction heating effect on the DLC coating are reported.

Abstract

Abstract

A RF planar coil inductively coupled plasma system (ICPs) is setup for this project. The system is powered by a 13.56 MHz, 550 W, 50Ω RF generator. The RF power is transferred to the plasma via a planar induction coil. The impedance matching circuit consists of an air-core step-down transformer and a tunable vacuum capacitor. The typical E-H mode transition which is distinctive to the ICP has been observed in argon plasma, hydrogen plasma and hydrogen-methane admixture plasma. The studies carried out include the observation of intensity of light emission from the plasma, the power transferred at different pressures, the concentration of plasma with glass funnel, the effect of methane present in hydrogen plasma and the induction heating effect. These studies are important for the application of the system for plasma enhanced chemical vapour deposition (PECVD) of diamondlike carbon (DLC) films deposited on silicon substrate. The effect of the percentage of methane, the influence of the pretreatment using diamond paste on the substrate and the induction heating effect on the DLC coating are reported.

Abstrak

Suatu sistem plasma induksi (ICPs) gegelung satah telah dibina dalam projek ini. Sistem ini menggunakan penjana RF 13.56MHz, 550W, 50Ω. Kuasa RF disalurkan kepada plasma melalui gegelung induksi satah. Litar peyelaras impedans yang diguna mengandungi transformer injap turun berteraskan udara dan kapasitor vakum bolehubah. Peralihan mod E-H yang khas bagi plasma induksi diperhatikan dalam plasma argon, plasma hidrogen dan campuran hidrogen dengan metana. Penyelidikan yang dijalankan termasuk pemerhatian bagi keamatan plasma, perubahan plasma bagi tekanan gas berlainan, penghimpunan plasma dengan kon gelas berlohong dan kesan pemanasan induksi. Penyelidikan-penyelidikan ini adalah penting untuk penyelidikan penyaduran "diamondlike carbon" (DLC) melalui kaedah penyaduran wap kimia secara pencergasan plasma (PECVD). Kesan daripada peratus metana berlainan, kesan daripada rawatan awalan dengan adunan intan dan kesan pemanasan induksi terhadap penyaduran DLC dikaji.

Acknowledgement

The author wishes to express his thank and gratitude to his supervisor, Professor Dr. Wong Chiow San for his constant guidance, concern and support during the period in which the project was conducted. The author is also indebted to Dr. Boonchoat Paosawatyanyong from Chulalongkorn University, Bangkok, who provided many valuable suggestions and assistance for this project. The author would like to thank Mr. Y. H. Low from Shin-Etshu (Malaysia) for his assistance in the analysis of the samples. Appreciations and thanks to Mr. Jasbir, Mr. S. P. Chew, Mr. H. J. Woo and all others who have in one way or another contributed towards the completion of this project. Lastly, the author is grateful to his family members for their encouragement and support.