DIAMONDLIKE CARBON THIN FILM DEPOSITION
USING A RF PLANAR COIL
INDUCTIVELY COUPLED PLASMA SYSTEM

BY
LIEW WAI SOON, B. Sc. (HONS.)
DEPARTMENT OF PHYSICS
UNIVERSITY OF MALAYA

DISSERTATION PRESENTED FOR THE
DEGREE OF MASTER OF SCIENCE
UNIVERSITY OF MALAYA
KUALA LUMPUR

2001
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>Abstrak</td>
<td></td>
<td>II</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td></td>
<td>III</td>
</tr>
<tr>
<td>Chapter 1:</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Graphite, diamond and diamondlike carbon</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Plasma synthesis of diamond or diamondlike carbon films</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>Some application of CVD diamond and diamondlike carbon films</td>
<td>12</td>
</tr>
<tr>
<td>1.3.1</td>
<td>Electronic packaging</td>
<td>12</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Cutting tools</td>
<td>12</td>
</tr>
<tr>
<td>1.3.3</td>
<td>Surface acoustic wave devices</td>
<td>13</td>
</tr>
<tr>
<td>1.3.4</td>
<td>Radiation detectors</td>
<td>14</td>
</tr>
<tr>
<td>1.3.5</td>
<td>Effective negative electron affinity</td>
<td>14</td>
</tr>
<tr>
<td>1.3.6</td>
<td>Protective coating</td>
<td>15</td>
</tr>
<tr>
<td>1.3.7</td>
<td>Anti-stick coating</td>
<td>15</td>
</tr>
<tr>
<td>1.4</td>
<td>Inductively coupled plasma (ICP) system</td>
<td>15</td>
</tr>
<tr>
<td>1.5</td>
<td>Planar coil configuration</td>
<td>17</td>
</tr>
<tr>
<td>1.6</td>
<td>Diamondlike carbon (DLC) thin film coating with RF ICPs</td>
<td>19</td>
</tr>
<tr>
<td>1.7</td>
<td>Objective and the organization of this thesis</td>
<td>19</td>
</tr>
<tr>
<td>Chapter 2:</td>
<td>System Descriptions and Instrumentations</td>
<td>20</td>
</tr>
</tbody>
</table>
2.1 Inductively coupled plasma system (ICPs) 20

2.2 Reactor chamber 23

2.3 Vacuum system and pressure measurement system 24

2.4 RF power and matching network 25

2.5 The gas inlet system 29

2.6 Diagnostic system 31

2.6.1 Voltage measurement 31

2.6.2 Current measurement 35

2.6.3 CCD based spectroscopic system 36

2.7 Surface analysis instruments 36

2.7.1 SEM and EDAX 36

2.7.2 Micro-Raman system 39

Chapter 3: Discharge Characteristics of ICP System 43

3.1 Overview 43

3.2 Experimental observation of E to H mode transition 45

3.3 Effect of operating pressure on E to H mode transition 60

3.4 Discharge of hydrogen and methane admixture 63

3.5 The study of induction heating effect of silicon substrate in hydrogen and methane discharge 67
Chapter 4: Plasma Enhanced Chemical Vapour Deposition of Diamondlike Carbon Thin Film

4.1 Plasma enhanced chemical vapour deposition

4.2 CVD diamond / diamondlike carbon films

4.3 Nucleation and growth of diamond / diamondlike carbon films

4.4 Substrates for CVD diamond / diamondlike carbon films formation

4.5 Sample pretreatment

4.6 PECVD of diamondlike carbon films on silicon substrate

4.6.1 Substrate pretreatment and cleaning

4.6.2 Deposition method and procedure

4.7 Effect of percentage of methane on DLC thin film coating

4.7.1 Results

4.7.1.1 Sample Si1 prepared with 0.8% methane Gas

4.7.1.2 Sample Si2 prepared with 1.0% methane Gas

4.7.1.3 Sample Si3 prepared with 3.0% methane Gas

4.7.1.4 Sample Si4 prepared with 5.0% methane Gas

4.8 Effect of substrate pretreatment

4.9 Effect of the induction heating on PECVD diamondlike carbon coating

4.10 Discussions
Chapter 5: Conclusions and Suggestions for Future Work

5.1 Conclusions 96

5.2 Suggestions for future work 98

References 99
Abstract

A RF planar coil inductively coupled plasma system (ICPs) is setup for this project. The system is powered by a 13.56MHz, 550W, 50Ω RF generator. The RF power is transferred to the plasma via a planar induction coil. The impedance matching circuit consists of an air-core step-down transformer and a tunable vacuum capacitor. The typical E-H mode transition which is distinctive to the ICP has been observed in argon plasma, hydrogen plasma and hydrogen-methane admixture plasma. The studies carried out include the observation of intensity of light emission from the plasma, the power transferred at different pressures, the concentration of plasma with glass funnel, the effect of methane present in hydrogen plasma and the induction heating effect. These studies are important for the application of the system for plasma enhanced chemical vapour deposition (PECVD) of diamondlike carbon (DLC) films deposited on silicon substrate. The effect of the percentage of methane, the influence of the pretreatment using diamond paste on the substrate and the induction heating effect on the DLC coating are reported.
Abstract

A RF planar coil inductively coupled plasma system (ICPs) is setup for this project. The system is powered by a 13.56MHz, 550W, 50Ω RF generator. The RF power is transferred to the plasma via a planar induction coil. The impedance matching circuit consists of an air-core step-down transformer and a tunable vacuum capacitor. The typical E-H mode transition which is distinctive to the ICP has been observed in argon plasma, hydrogen plasma and hydrogen-methane admixture plasma. The studies carried out include the observation of intensity of light emission from the plasma, the power transferred at different pressures, the concentration of plasma with glass funnel, the effect of methane present in hydrogen plasma and the induction heating effect. These studies are important for the application of the system for plasma enhanced chemical vapour deposition (PECVD) of diamondlike carbon (DLC) films deposited on silicon substrate. The effect of the percentage of methane, the influence of the pretreatment using diamond paste on the substrate and the induction heating effect on the DLC coating are reported.
Abstrak

Acknowledgement

The author wishes to express his thank and gratitude to his supervisor, Professor Dr. Wong Chiow San for his constant guidance, concern and support during the period in which the project was conducted. The author is also indebted to Dr. Boonchoat Paosawatanyong from Chulalongkorn University, Bangkok, who provided many valuable suggestions and assistance for this project. The author would like to thank Mr. Y. H. Low from Shin-Etshu (Malaysia) for his assistance in the analysis of the samples. Appreciations and thanks to Mr. Jasbir, Mr. S. P. Chew, Mr. H. J. Woo and all others who have in one way or another contributed towards the completion of this project. Lastly, the author is grateful to his family members for their encouragement and support.