Chapter 5 Framework Implementation

The library systems domain application framework is implemented according to

the system analysis and design models in relation to the layered system architecture

of (Jacobson, 1997).

— wpplicetion systen
1bray registration, companerts
low, reservation,
retum, fine process

business-specific
Library Systems «
Domain
data model
Jen companerts
systam sottware
Windows 95 companets

Figure 5.1: Layered System Architecture

Based on Figure 5.1 which displays the reusable library software system in a
layered architecture, the Window 95 operating system is the choice of
implementation platform at the system software layer. The reason for choosing
Windows operating system is not a major factor but simply of widespread availability.

The immediate upper layer is the middleware layer which is omnipresent in local and

74

distributed systems. The programming language, Java, is the preferred choice for this
project's middleware layer implementation for its object-oriented features, platform-
independent features and useful utility packages and classes such as the Java
Collection classes and Enterprise Edition System. Although an independent
application is developed and implemented in this project to test the viability of the
library systems domain application framework, Java has the necessary Application
Programming Interfaces (API) such as Remote Method Invocation (RMI) and
networking packages for distributed system development. This is left out for future

improvements.

On top of the middleware layer is the business-specific layer which consists of
the library system domain model and data management packages. These packages
consist of software components that make up a significant part of the framework and
development effort put into this research project for the library systems domain. The
typical scenarios of library entities' interactions and states as modelled in the
dynamic interaction diagrams are implemented into the business-specific layer. The
library packages implementation is based on the "Model-Controller-View" (MVC)
design pattern that identifies three communicating packages which are the domain
model, data management and user interface packages. The reusable common library
components, such as the library system domain model and subsystems of these
packages are placed here. Basically, these library systems domain packages are
deployed to application developers for framework utilisation, customisation and

application development.

Lastly, the implementation for the topmost layer, which is the application systems

layer, consists of the library software components with specific functions in the

75

application such as registration of borrowers and inventory of itles, loan, reservation,
return of loaned item and fine on late return. The implementation coordination which
comprised of activities' logic control flow between classes in these packages is
important to fulfil the library systems domain requirements of an application system.
However, a library application system offers little reuse and extensibility in framework
development because of the specific application system functions. The purpose of
this application systems layer is to develop specific application systems from
components customised by application developers that fit the needs of an end-user
library system. As part of the implementation, a default application system is
developed for framework testing purpose and immediate utilisation of library features

by application developers.

The variabilities of library requirements and implementations were identified as
variation points left to the application developers to customise and are based on
some abstract factory methods or common patterns identified in the initial framework
analysis and design. This project's implementation of an initialisation file for

configuration of library entity status and business rules will fulfil these variation points.

51 Implementation Classes

The use of a framework necessitates intimate knowledge of the framework
implementation and its classes. This type of framework is better known as a white-
box framework. Based on this consideration, this research project on library systems
domain application framework was set out to be implemented in such a fashion.

The library systems domain application framework has a programming model that

is made up of a common generic base classes in the structure of reusable software

76

component like JavaBeans. By modelling these classes as base factory classes and
let application developers extend derived classes with additional methods and
attributes to create customised objects, we can ensure a high degree of structural
consistency across applications and maintain a common set of indirect object
instantiations to avoid direct manipulation and mistaken changes to the library

domain classes.

The library systems domain application framework has implementation classes
developed using Java's JDK 2 language paradigm with powerful object-oriented
features. The UML high-level system design models comprise of several analysis
types and subsystems with relationships to define the library systems domain
architectural structure. Therefore, the models have significantly assisted
implementation effort of the library domain requirements and action rules. The
necessary functions of a library application are provided at the source code level in
classes that exhibit high cohesion. Library domain objects will call on the functions at
the implementation level, such as, functions with searching or sorting algorithm,
database access and graphical functions. Most of the implementation classes which
exist in a component subsystem are organised in a package as part of the application
framework. These classes are placed within the same level with a primary aim of
software reuse but they are distinguished on the basis of a domain model. Classes

within a package component have relationships to function as a subsystem.

5.2 Configuration and Initialisation of Business Rules

An utility class which accesses business rules in a configuration file as shown in

Figure 5.2 is set to pre-defined properties in a hash table data structure of String

77

values called HashMap in Java language. It is implemented to synchronise with
information such as maximum period of a loan, the number of loans for each member
and maximum days of reservation period that applies towards the library system. For
example, this utility class named "Status" with static methods is used by the library's
Borrower class to look up the persistent status of a borrower to ensure he or she
does not exceeds the maximum number of loans. The Copy class also calls on the
methods in the utility class to confirm on the availability of a copy item. A single
configuration file can quickly update the pre-conditions, initialisation and validation of
a business rule. A set of pre-conditions is usually imposed to different groups of
library members, for example, a registered member has a different set of rules or
privileges from a non-registered member, or in a university library, a student has less

privileges than a working staff.

available=available
borrowed=borrowed
onhold=onhold

allout=all borrowed
copyReturned=copy returned
reserved=reserved
MaxReserves=5

MaxLoan=5
dbName=poet : //LOCAL/my_base
fineDayWeek=25
fineDayMonth=100
DueConditionl=7
DueCondition2=14

membership=staff,member, public
stafffeé=1

memberfee=10

publicfee=20

Figure 5.2: Initialisation File for Configuration of
Library Entity Status and Business rules

78

As shown in Figure 5.2, an editable text-based file i§ used for default
initialisation or updates to the parameter variables representing the library systems
domain requirements. During the application system run-time and using the hashmap
algorithm, a referenced parameter is read as a key and the assigned value is
returned. Hence, this value is passed as a message to domain class constructors or
abstract factory methods in the control logic classes. Dynamic object instantiations
such as Loan, Reservation and Borrower are then possible. The dynamic state of
library entities can be identified as an internationalisation variable in the initialisation
file for database updates and persistency. The state of a library entity is important to
be tracked down for search and retrieval of loan or reservation, such as in a status of
available, borrowed or onhold.

The initialisation file can be overwritten with different business rules simply by
referring to the parameter key and reassigning a new value. For example, the Loan
period allowed to a member is referred with a parameter key named "loanDays" is

assigned 14 days and this can be changed to suit a new rule.

5.3 Storage Management

The storage management factor is considered to be one of the important
implementation issues. Absolute transient data fnemory is impractical because data
entered cannot be saVed permanently for future references. Data storage
management is a major factor for library system requirements especially for research
projects. The data can be complex as it involves composition, association,

aggregation and other relationships, especially with an object-oriented database.

79

Our decision to opt for a Java-based object-oriented database called POET
(POET, 1998) is an important implementation issue for proving the benefits it offers.
The full potential of an object-oriented database is yet to be discovered but the
significant advantages of object-oriented database technology in general promotes
its use. The benefits of POET implementation are its Object Query Language (oqQL),
persistent-aware classes, utility classes, collection-persistent classes. with typical
data structures as well as its algorithms and synchronisation methods to avoid

transaction collisions.

Relational Database Management System (RDBMS) are very popular among
business domains due to the fact that the relational database model is useful for
heavy data, light on relationships (Morgan, 1998) and has existed for a long time.
The adoption of an object-oriented framework for implementation and integration into
an existing library system using a legacy or relational database is a major
consideration. An application framework based on object-oriented technology is still
considered quite risky to business although beneficial and expects a slow change-
over and transition from an old system to a new system. However, an object-oriented
database is useful for persisting data and relationships among objects and outweighs
a relational database in a seamless integration with an object-oriented
implementation language.

Iteration of data objects in the storage is a pre-requisite design pattern for the
collection class. Each base class of the framework will find iteration useful to retrieve
the searchable object in the underlying data model and structure. According to
(Booch, 1994), by isolating the patterns of storage management, we can produce a

robust yet adaptable library. The design pattern should decouple storage

80

management policy from its implementation. A framework design should follow such
a pattern. The choice of database implementation and its operations should not be

restricted by the framework design

5.4 Application Fr k Custc

By creating a wizard tool and adopting it as part of the framework to help
application developers use the framework quickly and realise the many benefits the
framework offers to efficient software development. A wizard tool can lead the
framework user through steps of package selections and feature customisations,
which at the end of it, can produce a working application without a single inclusion of
coding by the application developers. An application framework can be difficult to
adopt quickly for application development due to its complexity and size. The idea of
the wizard tool is borrowed from the program installation setup package which now
becomes the favourite way of software deployment. The windows interface of a
wizard tool will offer a friendly interface for selection options and customisation of the

framework components.

81

i Application Wizard HEE

. % Default application with POET 5.1 database

ﬁﬁgr i ication with other

Next > Cancel

Figure 5.3: Step 1 of Wizard tool -
Choosing the Framework's Application Database.

Figure 5.3 shows a window's interface of the wizard tool as the first step to
assist framework users in a selection on the use of database with the framework
components. The first option is the default library system domain application
developed with the use of POET 5.1 object-oriented database. Application
developers can immediately use the application without further development if they
choose this option. The second option on the use of framework is to choose a
preferred database to go with it. Application developers can choose to develop and
customise their application, and yet, still use the framework components. As
appeared below the figure, the "next" button is enabled to lead the framework user to

the next step on the use of a wizard tool.

82

i Application Wizard [_ O] x]

[Library Domain

@ (] Model

@ [Contral
D Interface Binder
D Bind Borrower -

Bindex java -
inkrel

ry lower-level class that binds their respective cbject onto the databas

xface which has the prerequisite and gemeric
sthod

should implement this in
<prs

sband () </kea/pre

public interface Bindex

weid band();
3

< Previous Next > | Cancel

Figure 5.4: Step 2 of Default Option in Step 1 Wizard tool

In Figure 5.4, the upper portion of the window shows a tree hierarchy of
framework packages and contents. As shown in the figure, by choosing a particular
package component such as "Control" will reveal all its interface and classes. By
further selecting the interface, the implementation details at the source code level are
revealed. Application developers can refer to this code for understanding and
development. The proper ordering of componegnts into packages will quickly assist

application developers in the reuse of the framework.

83

[i Application Wizard

v Borrower Title

v Binder v Lookup v BindBorrower

v LookupBorrower
v Delete
v |BorrowerJFrame v/ LookupBorrowerJDialog

v DBorrowerJDialog

< Previous Next > Cancel

Figure 5.5: Step 2 of Customise Option in Step 1 Wizard Tool

Based on Figure 5.5, when application developers opt to customise his or her
own application by using the framework components, a screen is provided for the
selection of classes from each packaged component. Consequently, the wizard will
act as an automated cofe generation tool and generate the relevant component and
its selected classes. Only related classes and components can be enabled for

selection based on association and message dependency.

84

5.5 Application Framework Evaluation

To ensure the success of a framework, we must test it by building different
applications from it in the related problem domain. By starting off with a small
framework, we can manage it easier and eventually expand it by hooking it up with
other small frameworks. A framework should concentrate on a specific problem
domain because we do not want to build a class library. Lastly, we encourage other

developers to use our framework and develop extension frameworks.

For components and subsystems to interact, we have to test each unit first before
testing the interactions between the different units. We can test each subsystem as a
packaged component unit, for example, a Loan subsystem or a Reservation
subsystem. Each component has to be tested to ensure a framework is reliable and
reusable. The interface facade between subsystems, for example, between the Loan,
the Borrower and the Reservation, would have to be compliant and efficient for high
degree of reusability. A component testing can determine the stability of the

framework in order to have a reliable way of reusing one or more components.

Continuous iterations of improving the framework design over time can help
increase the degree of components reusability. Unforeseen demands from

application developers can be included if the framework is put to use and tested.

3

As mentioned earlier during system design, the library system domain
components are designed with interfaces or facades to facilitate reuse and avoid
complex framework implementation details. As such, the implementation of each
generic domain class with its respective interface and default implementation is

subclassed with preferred implementation for application development. For example,

85

class Loan is derived from a generic and default class called SuperLoan that does

not include practical methods implemented with specific library rules.

The default library application system developed with the object-oriented
application framework for library systems domain can be installed as described in

Appendix |: Installation Guide, and used as described in Appendix II: User Guide.

The following screen captures are from the default library application system. The
tested sequence of activities are closely matching the designed interaction diagram,

namely the sequence diagram.

[Ef izt Title

! OK Cancel

* pre-configured and
wnitialized duning class
loading

Figure 5.6: Insert a Title Dialog

According to Figure 5.6, insertion of a Title object into the library system
requires attributes of Title's name, author's name, ISBN no. and type of item. The
item may be a book, magazine, CD, video or ethers. The items can be manually set
in a configuration file based on a hash table of strings key and value pair mapping.
With the existence of different library systems, application developers using the
library systems domain application framework can customise the variable features
because the framework was designed after careful domain analysis, with such

variabilities in mind. This will only promote the value of framework reusability.

86

If additional attributes of a Title object is needed besides those mentioned in
the Title dialog, the application developer can overload the class constructor or
extend the base class and derive a specific constructor. The additional features of the
front-end dialog is added to the default base class's generated code from the

application framework.

metmber -

pre-corfigured & oK Cancel
initialised during
class loading

Figure 5.7: Insert a Borrower Dialog
A dialog box for inserting a Borrower into the library system is shown in Figure
5.7. The attributes expected of a Borrower object are name, address and type of
membership. The membership status, such as member, staff or public, is set as a

key and value hashmap in a configuration file

0-262-01153-0-B

Antonio Moreno

OK Cancel

Figure 5.8: Insert a Loan Dialog

87

reservation. The included details of a Reservation are title, date and time of

reservation which are circled in the figure.

found 1 object.
. O S

itle: STRUCTURE AND INTERPRETATION OF COMPUTER PROGRAMS

uthor: ABELSON, H.
ISBN: 0-262-01153-0
pe: book

State: available

Figure 5.10: Information Retrieval of a Title.

In Figure 5.10, the window reflects an information search on class Title. Based
on relative search, we can retrieve one or more records that match. The Title details
included are title, author, ISBN number, type of item, availability state, and lastly, the
last line shows the details of an aggregate copy, such as number copy, status and

item identification number, which are circled in the figure

89

Title: STRUCTURE AND INTERPRETATION OF COMPUTER PROGRAMS|
Author: ABELSON, H.
ISBN: 0-262-01153-0
Type: book

State: reserved

Copy 1 borrowed 0-262-01153-0-A

» (47233, 5 Sy T AOEES>

Figure 5.11: Information on a Title object with Reservation Status

As shown in Figure 5.11, the search on a Title can produce the current
availability status as reserved if all copies are on loaned and a Reservation is placed
on it. The above window displays the information of a single copy which is borrowed

on the particular date, time and by the borrower which are circled in the figure

90

found 1

object.

I T T

{Author: ABELSON, H.

ISBN: 0-262-01153-0

Type: book

State: onhold

® GNa TRUAILLO.
‘WNA TRUJILLO -

T

[Title: STRUCTURE AND INTERPRETATION OF COMPUTER PROGRAMS

Copy details
Borrower's name

Figure 5.12: Onhold Status for Reservation.

When we look up a Title and if

as, copy number, status, item identificati

We can conclude from a library scenario of searching for an item such as a

a Reservation is placed on the Title, the
immediate return of the Title's copy will be rendered with a pending (onhold) status
as shown in Figure 5.12. The Reservation details in the figure include title, author,
ISBN number, type of item, availability state, the details of the copy reserved, such
on number which are circled in the figure,

and the Borrower's name, which is circled in the figure, who is the first to get the

book, magazine, video, or CD, the tasks of looking for a unique attribute, such as an

item catalogue identification number, will provide us with an access and indexed key

91

which maps to other relevant attributes of an object such as type of item, the title, the
availability state and the author. The access key is an argument in the object query
statement of OQL. If there are multiple copies of a Title, all the copies details will also
be displayed as a generated list from a query traversal of an aggregate entity type.
The list's instances display unique identifiers and typically hold references to other
entities of domain classes with respective get and set methods.

The library rules have a chain of responsibility events in action, as depicted in
a state diagram or a sequence diagram, to identify the state of an object before an
operation is carried out on that object. For example, the Loan policy on a Copy is
based on the availability, reservation list, and eligibility of loans allowed for each
Borrower. The relevant information affecting an object is retrieved and displayed
upon query. This chain of responsibility driven policy is a design pattern adopted for
implementation (Gamma, 1994). In this library application system, a library rule is
placed on the number of loans allowed to a Borrower, which is a dynamic value in the

initialisation file easily configurable for run-time.

Return Copy Info Overdue Fine

[Fineiday]-> $0.75 for 3days.

OK

Figure 5.13: Fine on Borrower for overdue Loan.

As shown in Figure 5.13,' upon the return of a Copy on Loan, the system will

determine the last returning date. If it is overdue, a fine will be imposed on each day

92

based on pre-configured key/value pair. For example, the system is set to a $0.25
fine for a day and the system will return $0.75 fine for 3 days.

The time period of late return is defined into two stages in the library system
application prototype, DueCondition1 and DueCondition2, with fines of 25 and 100
monetary units respectively, i.e. the imposition of 25 unit for the overdue of first 7
days and 100 unit for the following 7 days. Such a library system policy is specific to
a library application and is dynamically associated with an entity through the
initialisation file at run-time. This concept is based on the Strategy Pattern defined in

(Gamma, 1994)

ity Delete Borrower [X]

Delete Borrower:
Antonio Moreno

OK Cancel

Figure 5.14(a): Delete a Borrower Dialog

lete Confirmation.
I Cannot delete. Referential Integrity
oK ,

Figure 5.14(b): Information Feedback of Deletion on Borrower

According to Figure 5.14(a), a window dialog is provided to delete the
Borrower's record from the database. After entered the Borrower's name into the

dialog and pressed the “OK” button, the Figure 5.14(b) window dialog appeared as

93

an information feedback if the Borrower has an outstanding Loan or Reservation,
deletion is not permitted due to data relationship and referential integrity between the
entity classes of Borrower and Loan or Reservation. The referred borrower still has
outstanding loans or reservations. This scenario illustrates the concept of
"Ownership". The implementation of object ownership as an aggregate attribute of an
entity type persists the objects and its relationships. The deletion of the container
object does not trigger an immediate deletion of its contained reference object which
may be a collection of object references. This application design reflects an important
business rule on entity relationships and data persistency. Additionally, a feature of
the POET Object-Oriented Database Management System (OODBMS) reflects such

an underlying implementation in regards to object deletion and ownership.

5.6 Summary

The library systems application framework is being tested from its
implementation as a prototype application. After implementing the framework
architecture as a layered system, we tested it by interfacing the library application
system components to the underlying library-specific systems domain components,
middleware components and system software components. We tested each unit
application and component system by itself and also as part of the layered system.
The interoperability of the components acting as a packaged subsystem is important
to ensure the high degree of reusability of these components.

The interaction diagrams in the system design phase has given us the

necessary guidelines in implementing the library rules and activities to fulfil the library

94

application system development. The state and attributes of an object type are
parameters affecting an operation.

The reusability features of a library systems domain application framework
were tested by incorporating configurable items parameters in an editable template
file. Variations points can then be adopted with ease in different library application
systems while still retaining the reusable library systems domain components. The
biggest factor affecting the usability of the library systems application framework is
the option to choose the type of database to work with, which could be a legacy
database or a new type of database, such as an OODBMS. Lastly, the wizard tool is
a convenient way to quickly assist application developers in producing a library

system application with little or no coding.

95

