EFFECT OF CARBON DIOXIDE SUPPLEMENTATION ON Chlorella PRODUCTION IN A HIGH-RATE POND TREATING RUBBER EFFLUENT

by

Susila Jeyaratnam

Dissertation submitted to the
Institute for Postgraduate Studies and Research,
University of Malaya, Kuala Lumpur,
in partial fulfillment of the requirements for the
Degree of Master of Biotechnology.

Perpustakaan Universiti Malaya

April 1997

ACKNOWLEDGEMENTS

This dissertation would not have materialized if not for the help, support and encouragement of the following people.

Firstly, I would like to thank my supervisor Assoc. Prof. Phang Siew Moi for her constructive advice and encouragement. To Prof Mohd. Ali Hashim for his guidance. I would also like to thank Mr. Veeriah and all the staff at IPT Farm for helping me during my outdoor work.

To, Muru, Suresh, Dinesh and Sudesh for their muscle power in helping me to transport the effluent from the factory into my high rate pond. To, Zainab and Saras for helping me out. To, Chu for sharing his view on the subject. To Samina, Melor, Aishah, Sheila, Albert and Thean for providing me with encouragement when I needed if

I would also like to thank my husband for patiently seeing me through this endeavour. And finally to my parents who have always supported and encouraged me throughout my studies.

ABSTRACT

Rubber Effluent (RE) was proven to be a suitable medium for algal growth in two previous studies. 'In this present study the effect of inorganic carbon supplementation on the productivity of *Chlorella vulgaris* was investigated in flasks and outdoor pond cultures. In flask cultures the specific growth rate obtained for CO₂ supplemented cultures was between 0.64 and 0.56 day.' Generally flasks supplemented with CO₂ or molasses or both together showed a better growth rate than the rubber effluent control.

Outdoor pond studies using the High Rate Algal Pond in five different batches had higher growth rate with supplementation of CO₂ and molasses (1.19 day⁻¹) compared to CO₂ alone (0.96 day⁻¹). Algal biomass concentrations up to 602mgL⁻¹ for CO₂ supplementation and 542mgL⁻¹ when supplemented with both CO₂ and molasses were obtained. The Chlorella biomass had good nutritional value, with up to 68.3% protein, 22.7% carbohydrates, 13% lipids and 0.7mg g⁻¹ dry weight of carotenoids. Treatment efficiency of ponds was high, giving up to 97.9%, 90% and 52.5% reductions for COD, NH₃-N and PO₄-P respectively for the CO₂ treated ponds. Ponds supplemented with molasses did not have good COD reduction due to the recalcitrant substances in molasses.

TABLE OF CONTENTS

			PAGE NO
ACK	NOWLE	DGEMENTS	i
ABST	RACT		ii
LIST	OF TAB	ILES	ix
LIST	OF FIGI	JRES	xi
LIST	OF PLA	TES	xiv
LIST	OF APP	PENDICES	xvi
CHAF	PTER 1	- INTRODUCTION	1
CHAF	TER 2	- LITERATURE REVIEW	
2.1	RUBB	ER INDUSTRIES IN MALAYSIA	6
2.2	CURR	ENT TREATMENT SYSTEMS IN MALAYSIA	8
2.3	CULTI	IVATION OF MICROALGAE	12
	2.3.1	Microalgal Cultivation Systems	15
	2.3.2	Algal Cultivation and Wastewater Treatment	19
	2.3.3	High Rate Algal Pond (HRAP)	22
2.4	MICRO	DALGAL BIOMASS - COMMERCIAL PRODUCTS	24
2.5	CULTI	VATION OF ALGAE IN RUBBER EFFLUENT	24
2.6	PHOT	OSYNTHETIC CO₂ FIXATION	33
	2.6.1	Role of carbonic anhydrase (CA) in algal photosynthesis	37
	2.6.2	The Carbon Dioxide Concentrating Mechanism (CCM)	39

	2.6.3	CO ₂ Fixation Modes	42
	2.6.4	Photrorespiration - loss of CO ₂	43
2.7	HETER	ROTROPHY AND MIXOTROPHY IN ALGAE - UTILIZATION	
	OF OF	RGANIC CARBON AND INORGANIC CARBON	
	COMP	POUNDS	45
2.8	POTE	NTIAL USES OF MICROALGAE	47
CHA	PTER 3 -	MATERIALS AND METHODS	
3.1	CHLO	RELLA VULGARIS	49
3.2	INNOC	CULUM PREPARATION	50
3.3	SOUR	CE OF EFFLUENT	52
3.4	CHAR	ACTERIZATION OF RUBBER EFFLUENT AND MOLASSES	53
3.5	LABOR	RATORY STUDIES	54
3.6	HIGH F	RATE ALGAL POND STUDIES	55
	3.6.1 T	he High Rate Algal Pond (HRAP) Design	55
	3.6.2 E	ffect of CO₂ and molasses supplementation in the HRAP	55
	3.6.3 5	semidiurnal Studies	60
3.7	ANALY	TICAL METHODS	60
	3.7.1 A	Igal cell count	60
	3.7.2 C	chlorophyll-a	62
	3.7.3	etermination of algal dry weight	62
	3.7.4 p	н	63
	3.7.5 L	ight	63

	3.7.6 Temperature and dissolved oxygen	63
	3.7.8 Daily solar radiation, sunshine hours and rainfall	63
3.8	POLLUTION PARAMETERS	64
	3.8.1 Chemical Oxygen Demand (COD)	64
	3.8.2 Ammoniacal - nitrogen (NH ₃ -N) assays	65
	3.8.3 Dissolved orthophosphate (PO ₄ -P) asays	66
	3.8.4 Total Solids (TS)	67
	3.8.5 Total Suspended Solids (TSS)	67
3.9	BIOMASS ANALYSIS	67
	3.9.1 Total crude protein	67
	3.9.2 Total dissolved carbohydrate	68
	3.9.3 Total lipids	69
	3.9.4 Total carotenoids	70
3.10	GROWTH RATE	72
	3.10.1 Heterotrophic and Autotrophic Growth Rate	72
3.11	ALGAL GROWTH POTENTIAL	73
CHAP	TER 4 -RESULTS	
4.1	CHARACTERISTICS OF RUBBER EFFLUENT (RE)	
	USED IN THE STUDY	74
4.2	CHARACTERISTICS OF MOLASSES	76
4.3	LABORATORY STUDIES	77
	4.3.1 Experiment I - Effect of CO_2 supplementation at	

	15minh ⁻¹ in RE and BBM	77
	4.3.2 Experiment II - Effect of CO2 supplementation at	
	25minh ⁻¹	77
	4.3.3 pH and other variations during the growth of algae	
	in the flasks	80
4.4	GROWTH AND BIOAMSS PRODUCTION OF CHLORELLA	
	IN THE HRAP	82
	4.4.1 Growth Curves based on cell count and chll-a	82
	4.4.2 Specific Growth Rate and Biomass Production	88
	4.4.3 Autotrophic and Heterotrophic Growth	91
4.5	POLLUTION PARAMETERS	93
	4.5.1 Chemical Oxygen Demand (COD)	93
	4.5.2 Ammoniacal nitrogen (NH ₃ -N)	98
	4.5.3 Dissolve Orthophosphate (PO ₄ -P)	101
	4.5.4 Total solids (TS) and Total Suspended Solids (TSS)	104
4.6	PHYSICAL PARAMETERS IN THE HRAP	104
	4.6.1 Dissolved oxygen (DO)	110
	4.6.2 pH	113
	4.6.3 Light irradiance and temperature	116
4.7	BIIOCHEMICAL COMPOSITION OF ALGAL BIOMASS	116
	4.7.1 Biochemical composition in Batches I and II	116
	4.7.2 Biochemical composition in Batches III and V	116
4.8	SEMIDIURNAL STUDIES	128
	4.8.1 Algal Cell Density	128
	4.8.2 Chlorophyll-a content	133

4.8.3 Chil-a content per cell	133
4.8.4 Dissolved Oxygen	142
4.8.5 pH levels	142
4.8.6 Light and Temperature conditions	142

CHAPTER 5 - DISCUSSION

5.1	EFFECT OF CO₂ SUPLEMENTATION ON Chlorella			
	PRODU	ICTION		159
5.2	EFFEC	T OF SUF	PPLEMENTATION OF CO2 TOGETHER	
	WITH	MOLASSE	ES ON Chlorella PRODUCTION	163
5.3	TREAT	MENT EF	FICIENCY OF THE HRAP	165
5.4	GENER	RAL PERF	ORMANCE OF THE HRAP	169
	5.4.1	Chlorella	Biomass Production	169
	5.4.2	Biochem	nical Composition of Chlorella Biomass	169
	5.4.3	Statistica	al Analysis on coorelation of algal growth in	
		the HRA	AP with physical chemical factors	171
	5.4.4	Mode o	f nutrition in the HRAP	173
	5.4.5	Semidiu	ırnal Changes	174
		5.4.5.1	Cell count and chil-a	174
		5.4.5.2	Dissolved Oxygen	175
		5.4.5.3	рН	175
		5.4.5.4	Temperature and Irradiance	176

	5.6	POTENTIAL USE OF THE HRAP IN THE	
		RUBBER INDUSTRY	177
CHAP	TER 6	-CONCLUSION	180
REFE	RENCE	ES .	182
APPE	NDICE	s	194

LIST OF TABLES

Table 1.1	Regulatory Standards of Water Course Discharge of	
	Effluent from Rubber Processing Factories	3
Table 2.1	Effluent characteristics of two main types of rubber	
	processing factories	7
Table 2.2	A summary of the different treatment systems currently	
	practiced in Malaysia	10
Table 2.3	Review of Efficiency of Treatment Systems	11
Table 2.4	Review of HRAP treatment systems	21
Table 2.5	Various commercial products from algae	23
Table 2.6	Summary of initial experimental runs carried out at the	
	Institute of Advanced Studies, University of Malaya	31
Table 2.7	Summary of experimental runs carries out at the Institute	
	of Advanced Studies, with molasses supplementation	32
Table 2.8	General Overview of Photosynthetic Process Adapted	
	by Algae	41
Table 3.1	Summary of the laboratory experiments for $\ensuremath{\text{CO}_2}$	
	supplementation	61
Table 3.2	Summary of High Rate Algal Pond Studies	61
Table 4.1	Average Characteristics of RE collected from Lee Latex	
	(June 1993 - Dec 1993) and Atherton Estate,	
	Nillai (Feb 1994 - July 1994)	74
Table 4.2	Characteristic of molasses (obtained from	
	Central Sugar Refinery)	76
Table 4.3	Exp. I - Growth of Chlorella vulgaris in 1L flasks aerated	

	with 5% CO ₂ at 1L min ⁻¹ , 15min h ⁻¹ - Day 4 data	78
Table 4.4	Exp. II - Growth of Chlorella vulgaris in 1L flasks aerated	
	with 5% CO_2 at 1L min ⁻¹ , 25min hr ⁻¹ - Day 5 data	78
Table 4.5	Summary of growth and biomass results in High Rate Algal	
	Pond studies	89
Table 4.6	Comparison of algal biomass concentration in different	
	HRAP batches	90
Table 4.7	Specific Autotrophic and Heterotrophic Growth Rate of	
	Chlorella vulgaris in the HRAP	92
Table 4.8	Summary of reduction in pollution parameters of RE	
	monitored during HRAP batches	94
Table 4.9	Range of physical parameters obtained during each batch	104
Table 4.10	Biochemical composition of algal biomass obtained from	
	HRAP - Batch I & II (Stationary phase)	128
Table 5.1	Algal Growth Potential (AGP) and the observed yield	
	in the HRAP	162
Table 5.2	Gross biomass productivity obtained under batch	
	culture conditions	164
Table 5.3	Final effluent quality in the HRAP	167

LIST OF FIGURES

Figure 2.1	Input and Output of microalgal mass culture	16
Figure 2.2	Calvin Cycle	36
Figure 2.3	A summary of for photosynthetic CO ₂ fixation	36
Figure 2.4	C ₄ - CO ₂ Fixation	37
Figure 2.5	Dual role of RuBisCo	43
Figure 2.6	Fate of phosphoglycollic acid	44
Figure 3.1	Innoculum preparation	51
Figure 3.2	Dimensions of HRAP, the paddle wheel, gas distribution	
	system and motor mounting apparatus	59
Figure 4.1	Variation in the RE quality used in the HRAP batches	75
Figure 4.2	Experiment I - Semilogarithmic plots of growth curve of	
	Chlorella vulgans in BBM and RE supplemented with CO_2	
	and molasses	79
Figure 4.3	Experiment I - Daily pH in flask cultures of Chlorella	
	vulgaris in BBM & RE supplemented with CO ₂	
	and molasses	79
Figure 4.4	Experiment II - Semilogarithmic plot for growth of	
	Chlorella vulgaris growth in BBM and RE supplemented	
	with CO ₂ and molasses	80
Figure 4.5	Experiment II - Semilogarithmic plot of chlorophyll-a values	
	of Chlorella vulgaris grown in BBM and RE supplemented	
	with CO ₂ and molasses	81
Figure 4.6	Experiment II - Daily pH in flask cultures of Chlorella	
	vulgaris in BBM & RE supplemented with CO ₂	

	and molasses	81
Figure 4.7	BATCH I - Semilogarithmic plot of chll-a and cell count	
	for Chlorella vulgaris grown in HRAP where 5% CO_2 in	
	air was bubbled into pond ICO from 0630 to 1830h at	
	20min h ⁻¹ daily at flowrate of 5Lmin ⁻¹	83
Figure 4.8	BATCH II- Semilogarithmic plot of chll-a and cell count	
	for Chlorella vulgaris grown in HRAP where 5% $\text{CO}_2\hspace{0.5mm}\text{in}$	
	air was bubbled into pond IICO from 0630 to 1830h at	
	20min h ⁻¹ daily at flowrate of 5Lmin ⁻¹	84
Figure 4.9	BATCH III- Semilogarithmic plot of chll-a and cell count	
	for Chlorella vulgaris grown in HRAP where 5% $\text{CO}_2\hspace{0.5mm}\text{in}$ air	
	was bubbled into pond IIICO from 0630 to 1830h at 40min h ⁻¹	
	daily at flowrate of 5Lmin ⁻¹	85
Figure 4.10	BATCH IV- Semilogarithmic plot of chll-a and cell count	
	for Chlorella vulgaris grown in HRAP where 5% $\text{CO}_2\hspace{0.5mm}\text{in}$ air	
	was bubbled into pond IVCO from 0630 to 1830h at 40min h ⁻¹	
	daily at flowrate of 5Lmin ⁻¹ and mol. added on day 2, 3 & 4	
	at 1830 in IVM	86
Figure 4.11	BATCH V- Semilogarithmic plot of chll-a and cell count	
	for Chlorella vulgaris in HRAP where $5\%~\text{CO}_2\text{in}$ air was	
	bubbled into pond VMCO from 0630 to 1830h at 40min $\ensuremath{\text{h}^{\text{-1}}}$	
	daily at flowrate of 5Lmin ⁻¹ and molasses added into VMCO	
	at 1830 on day 2, 3 & 4	87
Figure 4.12	Chemical Oxygen Demand in HRAP (Batch I)	
	where 5% CO ₂ in air was bubbled in daily from 6:30 to 18:30	93

Figure 4.13	Chemical Oxygen Demand in HRAP	
	(Batch II) where 5% CO_2 in air was bubbled in	
	daily from 6:30 to 18:30	95
Figure 4.14	Chemical Oxygen Demand in RE treated in	
	a HRAP system(Batch III) where 5% CO_2 in air was	
	bubbled in daily from 6:30 to 18:30	95
Figure 4.15	Chemical Oxygen Demand in RE treated in	
	a HRAP system(Batch IV) where 5% CO_2 in air was	
	bubbled in daily from 6:30 to 18:30 and 0.05% molasses	
	was added in IVM on day 2,3 and 4	96
Figure 4.16	6 Chemical Oxygen Demand in RE treated in a	
	HRAP system(Batch V) where 5% CO_2 in air was bubbled	
	into VMCO daily from 6:30 to 18:30 and 0.05% molasses	
	was added in VMCO on day 2,3 and 4	96
Figure 4.17	7 Ammoniacal nitrogen in RE of HRAP (Batch I) where 5%	
	CO ₂ was bubbled in daily from 6:30 to 18:30	98
Figure 4.18	B Ammoniacal nitrogen in RE of HRAP (Batch II) where 5%	
	CO ₂ was bubbled in daily from 6:30 to 18:30	99
Figure 4.19	Ammoniacal nitrogen in RE of HRAP (Batch III) where 5%	
	CO ₂ was bubbled in daily from 6:30 to 18:30	
Figure 4.20	Ammoniacal nitrogen in RE of HRAP (Batch IV) where	
	5% CO ₂ was bubbled in daily from 6:30 to 18:30	100
Figure 4.21	Ammoniacal nitrogen in RE of HRAP (Batch V) where	
	5% CO ₂ was bubbled in daily from 6:30 to 18:30 in	
	pond VMCO and 0.05% molasses was also added in	

	VMCO on day 2,3 & 4 at 18:30	100
Figure 4.22	Orthophosphate in RE of HRAP system(Batch I) where	
	$5\%\ CO_2$ was bubbled in daily from 6:30 to 18:30	101
Figure 4.23	Orthophosphate in RE of HRAP system(Batch II) where	
	$5\%\ CO_2$ was bubbled in daily from 6:30 to 18:30	102
Figure 4.24	Orthophosphate in RE of HRAP system(Batch III) where	
	where $5\%\ \text{CO}_2$ was bubbled in daily from $6{:}30$ to $18{:}30$	102
Figure 4.25	Orthophosphate in RE of HRAP system(Batch IV)where	
	$5\%~\text{CO}_2$ was bubbled in daily from 6:30 to 18:30 in IVCO	
	and 0.05% molasses was added in IVM on day 2,3&4 at 18:30 $$	103
Figure 4.26	Orthophosphate in RE of HRAP system(Batch V) where	
	$5\%~\text{CO}_2$ was bubbled in daily from 6:30 to 18:30 in VMCO	
	and 0.05% molasses was added in VMCO on day	
	2,3 & 4 at 18:30	103
Figure 4.27	Total Solids in the HRAP treating RE(Batch I) where	
	5% CO ₂ was bubbled in daily into ICO from	
	6:30 to 18:30	105
Figure 4.28	Total Solids in the HRAP treating RE(Batch II) where	
	$5\%\ CO_2$ was bubbled in daily into IICO from	
	6:30 to 18:30	105
Figure 4.29	Total Solids in the HRAP treating RE(Batch III) where	
	$5\%~\text{CO}_2$ was bubbled in daily into IIICO from	
	6:30 to 18:30	106
Figure 4.30	Total Solids in the HRAP treating RE(Batch IV) where	
	5% CO ₂ was bubbled in daily into IVCO from 6:30	

	to 18:30 and molasses was added in IVM at 1830 on	
	day 2,3 and 4	106
Figure 4.31	Total Solids in the HRAP treating RE(Batch V) where	
	$5\%~\text{CO}_2$ was bubbled in daily into VMCO from $6{:}30$	
	to 18:30 and molasses was added in VMCO at 1830 on	
	day 2,3 and 4	107
Figure 4.32	Total Suspended Solids in Batch I with CO ₂	
	supplementation in ICO	107
Figure 4.33	Total Suspended Solids in Batch II with CO ₂	
	supplementation in IICO	108
Figure 4.34	Total Suspended Solids in Batch III with CO ₂	
	supplementation IIICO	108
Figure 4.35	Total Suspended Solids in Batch IV with CO ₂	
	supplementation in IVCO and molasses	
	supplementation in IVM	109
Figure 4.36	Total Suspended Solids in Batch V with CO ₂	
	and molasses supplementation in VMCO	109
Figure 4.37	Dissolved Oxygen levels in RE of HRAP (Batch I)	
	where $5\%\ CO_2$ in air was bubbled in daily form	
	0630h to 1830h	110
Figure 4.38	Dissolved Oxygen levels in RE of HRAP (Batch II)	
	where 5% CO ₂ in air was bubbled in daily from	
	0630h to 1830h	111
Figure 4.39	Dissolved Oxygen levels in RE of HRAP (Batch III)	
	where 5% CO₂ in air was bubbled in daily form	

	0630h to 1830h	111
Figure 4.40	Dissolved Oxygen levels in RE of HRAP (Batch IV)	
	where 5% CO_2 in air was bubbled in daily form 0630h to	
	1830h in IVCO and molasses supplementation in IVM	
	on day 2,3 and 4 at 1830h	112
Figure 4.41	Dissolved Oxygen levels in RE of HRAP (Batch V) where	
	$5\%~\text{CO}_2$ in air was bubbled in daily form 0630h to 1830h in	
	VMCO and molasses supplementation in VMCO on day 2,3	
	and 4 at 1830h	112
Figure 4.42	pH in HRAP (Batch I) where 5% CO_2 in air was	
	bubbled in daily form 0630h to 1830h in ICO	113
Figure 4.43	pH in HRAP (Batch II) where 5% CO ₂ in air was	
	bubbled in daily form 0630h to 1830h in IICO	114
Figure 4.44	pH in HRAP (Batch III) where 5% CO ₂ in air was	
	bubbled in daily form 0630h to 1830h in IIICO	114
Figure 4.45	pH in HRAP (Batch IV) where 5% CO_2 in air was	
	bubbled in daily form 0630h to 1830h in IVCO and 0.05%	
	molasses was added on day 2,3 and 4 at 1830h in IVM	115
Figure 4.46	pH in HRAP (Batch V) where 5% CO_2 in air was	
	bubbled in daily form 0630h to 1830h in VMCO and molasses	
	was added in VMCO on day 2,3 and 4 at 1830h	
	into VMCO too	115
Figure 4.47	Irradiance during the HRAP study - Batch I	117
Figure 4.48	Irradiance during the HRAP study - Batch II	117
Figure 4.49	Irradiance during the HRAP study - Batch III	118

Figure 4.50	Irradiance during the HRAP study - Batch IV	118
Figure 4.51	Irradiance during the HRAP study - Batch V	119
Figure 4.52	Temperature of pond water during the HRAP	
	study - Batch I	119
Figure 4.53	Temperature of pond water during the HRAP	
	study - Batch II	120
Figure 4.54	Temperature of pond water during the HRAP	
	study - Batch III	120
Figure 4.55	Temperature of pond water during the HRAP	
	study - Batch IV	121
Figure 4.56	Temperature of pond water during the HRAP	
	study - Batch V	121
Figure 4.57	Biochemical composition of algal biomass from	
	Batch III - Control	122
Figure 4.58	Biochemical composition of algal biomass from	
	Batch III - CO ₂	123
Figure 4.59	Biochemical composition of algal biomass from	
	Batch IV - Molasses	124
Figure 4.60	Biochemical composition of algal biomass from	
	Batch IV - CO ₂	125
Figure 4.61	Biochemical composition of algal biomass from	
	Batch V - Control	126
Figure 4.62	Biochemical composition of algal biomass from	
	Batch V - Molasses + CO₂	127
Figure 4 63a	Semidiumal changes in algal cell density in HRAP	

	on day 2 Batch I	129
Figure 4.63b	Semidiurnal changes in algal cell density in HRAP	
	on day 1 Batch II	129
Figure 4.63c	Semidiurnal changes in algal cell density in HRAP	
	on day 5 Batch III	130
Figure 4.63d	Semidiurnal changes in algal cell density in HRAP	
	on day 7 Batch III	130
Figure 4.63e	Semidiumal changes in algal cell density in HRAP	
	on day 2 Batch IV	131
Figure 4.63f	Semidiurnal changes in algal cell density in HRAP	
	on day 4 Batch IV	131
Figure 4.63g	Semidiurnal changes in algal cell density in HRAP	
	on day 3 Batch V	132
Figure 4.63h	Semidiurnal changes in algal cell density in HRAP	
	on day 5 Batch V	132
Figure 4.64a	Semidiurnal changes in chlorophyll a concentration in HRAP	
	on day 2 Batch I	134
Figure 4.64b	Semidiurnal changes in chlorophyll a concentration in HRAP	
	on day 1 Batch II	134
Figure 4.64c	Semidiurnal changes in chlorophyll a concentration in HRAP	
	on day 5 Batch III	135
Figure 4.64d	Semidiurnal changes in chlorophyll a concentration in HRAP	
	on day 7 Batch III	135
Figure 4.64e	Semidiurnal changes in chlorophyll a concentration in HRAP	
	on day 2 Batch IV	136

Figure 4.64f	Semidiurnal changes in chlorophyll a concentration in HRAP	
	on day 4 Batch IV	136
Figure 4.64g	Semidiurnal changes in chlorophyll a concentration in HRAP	
	on day 3 Batch V	137
Figure 4.64h	Semidiurnal changes in chlorophyll a concentration in HRAP	
	on day 5 Batch V	137
Figure 4.65a	Semidiurnal changes in chlorophyll a per cell in HRAP on day	
	2 Batch I	138
Figure 4.65b	Semidiurnal changes in chlorophyll a per cell in HRAP on day 1	
	Batch II	138
Figure 4.65c	Semidiurnal changes in chlorophyll a per cell in HRAP on day 5	
	Batch III	139
Figure 4.65d	Semidiurnal changes in chlorophyll a per cell in HRAP on day 7	
	Batch III	139
Figure 4.65e	Semidiurnal changes in chlorophyll a per cell in HRAP on day 2	
	Batch IV	140
Figure 4.65f	Semidiurnal changes in chlorophyll a per cell in HRAP on day 4	
	Batch IV	140
Figure 4.65g	Semidiurnal changes in chlorophyll a per cell in HRAP on day 3	
	Batch V	141
Figure 4.65h	Semidiurnal changes in chlorophyll a per cell in HRAP on day 5	
	Batch V	141
Figure 4.66a	Semidiurnal changes in dissolved oxygen in HRAP on day 2	
	Batch I	143
Figure 4 66b	Semidiumal changes in dissolved oxygen in HRAP on day 1	

	Batch II	143
Figure 4.66c	Semidiurnal changes in dissolved oxygen in HRAP on day 5	
	Batch III	144
Figure 4.66d	Semidiurnal changes in dissolved oxygen in HRAP on day 7	
	Batch III	144
Figure 4.66e	Semidiurnal changes in dissolved oxygen in HRAP on day 2	
	Batch IV	145
Figure 4.66f	Semidiurnal changes in dissolved oxygen in HRAP on day 4	
	Batch IV	145
Figure 4.66g	Semidiurnal changes in dissolved oxygen in HRAP on day 3	
	Batch V	146
Figure 4.66h	Semidiurnal changes in dissolved oxygen in HRAP	
	on day 5 Batch V	146
Figure 4.67a	Semidiurnal changes in pH in the HRAP on day 2 Batch I	147
Figure 4.67b	Semidiurnal changes in pH in the HRAP on day 1 Batch II	147
Figure 4.67d	Semidiurnal changes in pH in the HRAP on day 7 Batch III	148
Figure 4.67e	Semidiurnal changes in pH in the HRAP on day 2 Batch IV	149
Figure 4.67f	Semidiurnal changes in pH in the HRAP on day 4 Batch IV	149
Figure 4.67g	Semidiurnal changes in pH in the HRAP on day 3 Batch V	150
Figure 4.67h	Semidiurnal changes in pH in the HRAP on day 5 Batch V	150
Figure 4.68a	Semidiurnal changes in solar irradiance in the HRAP on	
	day 2 Batch I	151
Figure 4.68b	Semidiurnal changes in solar irradiance in HRAP on day 1Batch II	151
Figure 4.68c	Semidiurnal changes in solar irradiance inHRAP onday 5 Batch III	152
Figure 4.68d	Semidiurnal changes in solar irradiance in the HRAP on	

хx

	day 7 Batch III	152
Figure 4.68e	Semidiurnal changes in solar irradiance in the HRAP on	
	day 2 Batch IV	153
Figure 4.68f	Semidiurnal changes in solar irradiance in the HRAP on	
	day 4 Batch IV	153
Figure 4.68g	Semidiurnal changes in solar irrradiance in the HRAP on	
	day 3 Batch V	154
Figure 4.68h	Semidiurnal changes in solar irradiance in the HRAP on	
	day 5 Batch V	154
Figure 4.69a	Semidiurnal changes in temperature in the HRAP	
	on day 2 Batch I	155
Figure 4.69b	Semidiurnal changes in temperature in theHRAP	
	on day 1 Batch II	155
Figure 4.69c	Semidiurnal changes in temperature in the HRAP	
	on day 5 Batch III	156
Figure 4.69d	Semidiurnal changes in temperature in the HRAP	
	on day 7 Batch III	156
Figure 4.69e	Semidiurnal changes in temperature in the HRAP	
	on day 2 Batch IV	157
Figure 4.69f	Semidiurnal changes in temperature in the HRAP	
	on day 4 Batch IV	157
Figure 4.69g	Semidiurnal changes in temperature in the HRAP	
	on day 3 Batch V	158
Figure 4.69h	Semidiurnal changes in temperature in the HRAP	
	on day 5 Batch V	158

LIST OF PLATES

Plate 1	Chlorella vulgaris 001	56
Plate 2	View of the two High Rate Algal Ponds with the gas tanks	56
Plate 3	The perforated stainless steel pipes used to bubble CO_2 and air	
	into the pond	57
Plate 4	The paddle wheel used to mix the Chlorella culture	57
LIST OF APE	PENDICES	
Appendix 1	Data for HRAP Batches - Cell count (X10 ⁵ ml ⁻¹)	196
Appendix 2	Data for HRAP Batches - Chll-a (X10 ³ mgL ⁻¹)	197
Appendix 3	Data for HRAP Batches- pH	198
Appendix 4	Data for HRAP Batches- Dissolved Oxygen(mgL ⁻¹)	199
Appendix 5	Data for HRAP Batches - Temperature (°C)	200
Appendix 6	Data for HRAP Batches - Irradiance ($\mu Em^{-2}s^{-1}$)	201
Appendix 7	Data for HRAP Batches - Chemical Oxygen Demand (mgL ⁻¹)	202
Appendix 8	Data for HRAP Batches - Ammoniacal Nitrogen (mgL ⁻¹)	203
Appendix 9	Data for HRAP Batches - Dissolved Orthophosphate (mgL $^{-1}$)	204
Appendix 10	Data for HRAP Batches - Total Solids (mgL ⁻¹)	205
Appendix 11	Data for HRAP Batches - Total Suspended Solids (mgL ⁻¹)	206
Appendix 12	Data for HRAP Batches - Biochemical Composition of	
	Algal Biomass	207
Appendix 13	Weather Data obtained from Malaysian Metereological	
	Services	208