CHAPTER 1

RIEMANNIAN MANIFOLD

1.1 Introduction

We shall give some basic notations pefore we proceed.

Let R be the set of real numbers. If n is a positive integer, let R” be the standard
n-dimensional ~ Euclidean  space  of  ordered n-tuples  of real numbers,
R" ={(a,,...,a,):a, €R, i= I,...,n}.

Let u',i=1, ..., n, be the natural coordinate functions for R”, u':R" — R , where
u'(a,,...a,)=a,.

Let U be an open set of R™. Then a function f:U —» R” is said to be C” if the
components are C”, that is, it has continuous partial derivatives of all orders and types.

Let M be a topological space, p a point in M. A coordinate chart at p is a function
#:U — R", where U is an open set of M containing p and ¢ a homeomorphism onto an

open subset of R”.

The coordinate functions x', i=1, ..., n of the coordinate chart are the real valued
functions on U, given by the entries of values of ¢, that is, x' = u' op:U — R. Thus for
each p e U, ¢(p) = (x'(p), ey x"(p)), so we shall write ¢ = (x', ..., x"). We shall call @

a coordinate map, U the coordinate neighbourhood and (x', ..., x") a coordinate system

at p.



An n-dimensional manifold is a p pact, second cc bl logical space
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M such that M is a Hausdorff space and there exists a collection of coordinate charts

(...}

, where (U,,¢,) is at phism of the c d open set cM
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onto an open subset of R” satisfying the following:
@ Mm=u,,
(i) forany @, f ,if U,NU, # D, then the mapping
b, 085" 6,(U,NU,) > ¢, (U,NU,)
is a diffeomorphism, and

(iii)  the collection of charts {(U,,,¢n )}a is maximal with respect to (ii).

If furthermore the mapping ¢, o ¢,":¢, (U, NU,) - ¢,(U,NU,) is C” for any
a, f#, then M is said to be a C” manifold.

In this thesis, we shall only consider C” manifolds.

Let M, N be two manifolds. If fis a function from Mto N, /: M — N such that for
any coordinate charts (U, ¢), (V, @), of M, N respectively, with f(U)c V', pofopis
C”, then f is said to be a C” function from Mto N.

Let M be an n-dimensional manifold and denote by C”(n1) to be the set consisting
of all C” real valued functions in some open neighbourhood of m in M. A tangent or a
tangent vector X at me M is a function (operator) X :C”(m)— R such that for every

f,8eC’(m),a,beR,



(i) X(af +bg) =a(X/)+b(Xg),
(i) X(fg) = (X)g(m)+ [(m)(Xg).

The set of all tangents at m will be called the tangent space at m and will be
denoted by M, . It is easy to show that the tangent space M, is an n-dimensonal vector

space with the usual operations.

The set of all tangents on M, that is, the union of M, for all m in M, U M, is

meM

denoted by M and called the rangent bundle of M. We will sometimes write M, as 7, M.

We denote the dual of M, or T, M by M, or T, M.

Let (U,#) be achartat me M and ¢ =(x', ..., x") a coordinate system about nz.

We define for each i, a coordinate vector at m, denoted (%) , by

(2). /- 2285 o

where x' = ' o ¢ and the differentiation on the right side of the equation is as usual on R"

forany f e C”(m).

A vector field X on a set U c M is a mapping that assigns to each point p e U a
vector X, in M,. A vector field X is said to be C” on an open set U if for every
f € C”(m), where m e U , the function define by (X/)(p) = X,f is C” on UNV , where
V is the domain of f. We denote by (M) the set of all C” vector fields on M.

The Lie Bracket of two vector fields X, ¥, denoted [X, Y], is defined by
[X, Y1/ = X(¥/)-Y(Xf) for any f eC”(M). This bracket operation satisfies the

following identity which is called the Jacobi Identity:



[X, 1Y, Z]1+(Z, [ X, Y]] +[Y, [Z, X)) =0,
where X, ¥, Z are C” vector fields in M.

It is obvious that in a coordinate system (x', ..., x"), the Lie Bracket of its

coordinate vector fields vanishes, that s, [i,, i] =0 forall i, .
&' &/

We define a curve in M as a mapping of an interval of the real line into M such that
there is an extension to an open interval which is a C* map. A curve yis said to be closed
if yis defined on a closed interval [a, b] and for which y (a) = y (b).

If yisa C” curve in M such that y(c)= p, we define y(c) e M, the tangent to yat

d(foy)
dt

¢ by requiring for every SeC(p), yo)f = (c), where 1 is the parameter

along y.
We would like to have a look at the coordinate expression of a curve y in a
coordinate neighbourhood U with coordinate system (x', ..., x"). We write the i-th

component of yas x' oy =y'. Thus

7= (x"oy(0), .y x" 0y (1))
AN

As a consequence,
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A curve y :I > M is called an integral curve of X eX(M)if y = Xoy, that is
y()=X(y@r) forallte .
We can express the equation y = Xoy in terms of a coordinate system

(x', ..., x"), this will give us a system of first-order ordinary differential equations. Thus

Proposition 1.1 [Bi, page 122

A curve yis an integral curve of a vector field X if and only if for every coordinate

chart, the coordinate expressions y' of y and X' of X satisfy the system of differential
Lo dy! ' .
equations 7: X'(y(t) for1<i<n.

As a consequence, we have

Proposition 1.2 [Hi, page 12

If X e (M), then for each p € M, there is an interval I around 0 and an integral

curve y :/ — M of X through p.

1.2 Submanifolds

Let M and N be two m-di ional and n-di ional C” ifolds respectively.

Let p: M — N be a C” map from M to N. The differential of ¢ , denoted by dg or @..is
defined by ¢,(m)=dp,: M, - N, where (dp,(X))f = X(fop) for any X e M,,

and f € C”(N). Observe that dp maps TM to TN.



A C” mapping ¢ :M — N is said to be an immersion if dp,: M, — N is

e(m)
injective for all m in M. We said that M is immersed in N or that M is an immersed

submanifold of N. If, in addition, ¢ is injective, we say that ¢ is an imbedding and M is

called an imbedded sub ifold or just a sub ifold of N.

1.3 Tensors

Let U and V be finite dimensional vector spaces and F(U, V) be the free vector
space over R whose generators are the points of U xV . Hence F(U, V)consists of all
finite linear combinations of pairs (u, v) with ue U and v e V. Let W(U,V)be the
subspace of F(U, V) generated by the set of all elements of F(U,V) of the form
() + 1y, v) = (4, V) = (15, V), (u, v, +v,) = (u,v) = (4, v,), (u,v)—r(u,v) and

(u, rv) = r(u, v), where u, u;,u, €U, v,v,, v, €V and r eR. The tensor product of U
) . F(U,V) .
and V is defined as the quotient space W, v) and is denoted by U ® V.

The contravariant tensor space of degree r for a vector space V, is defined as
V® .- @V (rtimes tensor product), whereas the covariant tensor space of degree s for a
vector space V, is defined as V' ® --- ® V" (s times tensor product), where V' is the dual
vector space of V. We note that 7, (V) =V and T,"(V¥)=V". The tensor space of type
(r, s) of a vector space V, T,/(V) is defined as V' ® --- @V @V ® --- ®V" (r times

tensor product of ¥ and s times tensor product of V*). It can be shown that



T'(M)= UTJ’(T,, M) is a vector bundle (see page 14 for definition) over M with fibre

pert
' (p)=T/( T, M). A tensor field of type (r, 5) is just a cross section of T/ (M).

It is well known that a tensor can be viewed as a multilinear function.

A tensor is symmetric if and only if its value remains the same for all possible
permu!alioﬁs of its arguments (thus only T0 or 7,” tensors can be symmetric). A tensor is
skew symmetric if and only if its value after any permutation of its arguments is the
product of its value before the permutation and the sign of the permutation.

A skew symmetric covariant tensor of degree s in 7°( M) is also called an s-form.

As part of the vector space structure, we have that tensors of the same type can be
added and multiplied by scalars. Now we shall define the tensor product of tensors of
possibly different types. The tensor product of a tensor S of type (r, s) and a tensor 7 of
type (1, u) is a tensor S®T of type (r+1, s+u) defined as a function on (V)" x V'*
by

ST, W™ vy, v, ) =S, W, Vi VT ™ v )

The associative and distributive laws of tensor product are true and easily verified:

SOT®W =S(TOW),
S®(T+W)=S®T+SOW ,
(S+T®W =SOW +TOW

whenever the types of S, T, ¥ are such that these formulas make sense.



Let @ and 6 be forms of degree p and q respectively. The exterior product wA @ is

defined to be the (p +¢q) form

@\ = +ngn(n)(w® Q)orm,
(p+)t’;

where the sum is taken over all permutations 7 of the set {,2, ....p+q}.
We also have
oA =(-1)" A ,

A0+ ) = wAO+wAf |
(@WAOYAS = wA(OAP) .

Let X'be a vector field on M. An operator £, called the Lie derivative via X which
maps 7,"( M) into itself, is defined as follows:
@ L./=X for f eC” (M),
(b L, Y=[X, 1] for ¥ € T (M),
©) (@) =X -a(X, 1) for Y €T, (M), @ e T"(M), and
@ &0, ..o, ¥, .., T

=L (0w, ..., ®,, ¥, ..., 1))
REACTICIRRRNCHNS (RS A E Y (T O SR r)
0@y, . 0, LK, Y- O, . @, L& r)

for 0eT/(M), ¥, .. ¥, e[} (M), w,, ..., », eT'(M).

We list down a few important properties of £, : [Hi, page 92]

(1) &, preserves forms,



2 L (S+T)=2,5+2,T,
(3)  4,(S®P)=(L,S)®P+5®L, P),
“ Ly (wAa) = w)Aa+ oA, a)

for S, T tensors of the same type, P any tensor and w, o any two forms.

1.4 Affine connections on manifolds

We begin this section with the definition of an affine connection on a manifold M.

An affine ion on M is a mapp
Vi (M) x ¥(M) - ¥(M), (X,Y)> V.Y

which satisfies the following conditions:

@) Vp,Z=/,Z+gV,Z,

@2) V(Y +2)= [V V(XY +V,Z

for any f, g€ C"(M)and X, ¥, Z € ¥(M). The operator V, is called the covariant

derivative with respect to X.
We define the covariant derivative of a function / with respect toXby V. /=Xf.
We define here the covariant derivative V ,K with respect to X of a tensor field K

of type (0, k) or (1, k) as follow,

k
(VAKX s X)) = (VKX oy X)) = KX VX, LX)
i=l
forany X, e (M), i=1, ..., k.

The tensor field K is said to be parallel with respect to the affine connection if

VK=0 forany X € ¥(M).



For any p € M, choose a system of coordinates about p and write X = Z X'o,
Izl

Sy o 5 -2 i
Y=Z|Y(,,whercr,=d‘f, fori=1, ..., n, we have
I

v,r=3xv, $ra)

i=l =

=S X(@re, + XYV, 4, .
J W

7 e
Setting V3, =D T4, , we see that the set of functions {I'}} called the Christoffel
k=1

symbols, satisfying the following property (*), will completely determine the connection.
If (z', 2%, ...,2") is another coordinate system at p, we obtain another set of
functions (I:,f'):

0 &y O
V,—==>T =,
v a g”@:‘

by using the axioms (al), (a2) of connections, we find that

. "ot & &t "o Ayt
- re z
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Conversely, suppose that for any coordinate system about p, there is a set of functions

(F,;‘) such that (*) holds. Then we can define an affine connection on M by using the

equation V, 2, = ZF,}&, .
k=1



We define the torsion tensor T of type (1,2) as T(X,Y)=V V-V X -[X,Y]
for any X, Y € ¥(M). An affine connection V with vanishing torsion tensor field is called

a torsion-free connection.

We define the curvature . tensor R of type (1,3) as

R(X,NZ=Y,Z-Y,Z-VY,, ,,Z forany X, ¥, Z e ¥(M).

A vector field ¥ along a curve y is said to be parallel along y if and only if V¥ =0.
The curve is said to be a geodesic if and only if V, ¥ (t)=0. Thus a curve is a

geodesic if and only if its tangent vector field is parallel along the curve.

Theorem 1.3 [Hi, page 57]

Let y :[a, h]—) M be a curve. For each vector ¥ in M, there is a unique C”
field Y(r) on y such that Y(a)=7 and the field Y(r) is parallel along y. The mapping
P,M,, —> M, defined by P, (Y)=F(t) is a linear isomorphism which is called

parallel translation along y from ya) to A1).

Theorem 1.4 [Hi, page 58

Let me M, X € M,,. Then for any real number b, there exists a real number r >0
and a unique curve y, defined on (b—r,b+r) such that y(b)=m, y(b)=X and y a

geodesic.



1.5 Riemannian manifolds
A Riemannian metric on M is a tensor field g of type (0,2) which satisfies the
following:
(i) g(X,V)=g(Y, X) forany X,V eM,, peM, that is, g is symmetric,
(ii) g(X,X)20 forany X e M, and g(X,X)=0 if and only if X =0, that is, g is

positive definite.

The ifold M endowed with a Ri ian metric g is called a Riemannian
manifold. The length of a vector X is denoted by |X]| and is defined by | X|’ = g(X, X).
A tensor field g of type (0, 2) which satisfies (i) above and (ii)’ below is called a pseudo-
Riemannian metric on M:

(i)’ g(X, ¥)=0 forall Ximplies ¥ =0.

The following is a well known theorem which can be found in [Ya2, page 29].

Theorem 1.5
There exists one and only one affine connection on a Riemannian manifold that
satisfies the following conditions:
(i) the torsion tensor 7 vanishes, that is,
T(X,Y)=V,¥Y-V,X-[X,¥]=0.
(i) gis parallel, that is, V , g = 0. Therefore, we have

X(g(¥,2))=g(V,Y,Z) +g(Y,V,2)



forany X. Y, Z € ¥X(M).

The affine connection stated in the theorem above is called the Riemannian
connection or the Levi-Civita connection. It is characterized by

28(V Y, 2) = X(g(¥,2)) + Y(8(Z, X)) - Z(g(X,Y)
+g(lX, 1,.2)+g([Z, X1,}) - g([Y, Z}), X)

forany X, ¥, Z € ¥( M) [Ko, page 160].

Next, we shall define the Riemannian curvature tensor R of type (0,4) by
R(X,Y,U,V)=g(R(X, U, V)
forany X, Y, U, V e X(M).

The Ricci tensor field is defined by

S(X, 1) = 3 g(R(E,, X)V,E,),

i=

where (E,, ..., E,) is alocal field of orthonormal frames and X, ¥ e ¥(M).

1.6 Distributions on manifolds

An r-dimensional distribution on a manifold M is a mapping D defined on M which
assigns to each point p of M an r-dimensional linear subspace D, of T, M. A vector field X
is said to belong to D if we have X, e D, for every p e M. We denote this by writing

X € I'(D). The distribution D is said to be differentiable if for any p € M, there exists r



differentiable linearly independent vector fields X, e I(D) in a neighborhood of p. In this

dissertation, we only ider differentiable distributions of class C”.

A submanifold N of M is said to be an integral manifold of D if for every pe N,
JAT,N)=D,,,, where [ is the imbedding of N into M. The distribution is said to be
integrable if for every g € M , there exists-an integral manifold of D through g. If there
exists no integral manifold of D that properly contains N, then N is called the maximal
integral manifold or leaf of D.

The distribution D is said to be involutive if for all X,Y eI'(D), we have

[X, Y] e(D). The following is the classical Frobenius theorem [Be, page 8].

Theorem 1.6
Let D be an involutive distribution on a manifold M. Then D is integrable and
through every point p € M, there passes a unique maximal integral manifold of D. Any

integral manifold through p is an open submanifold of the maximal one.

1.7 Vector bundles

Let £ and M be any arbitrary manifolds and 7z be a differentiable mapping of E onto
M. The manifold E is called the vector bundle over M under the projection 7 if the
following conditions are satisfied:
(i) 77'(p) is a real vector space called the fibre above p and each 7™'(p) is isomorphic

to R*, for some fixed k, and



(ii) for each p € M, there exist an open neighborhood U of p such that the mapping
¢:UxR' > 7'(U) is a diffeomorphism satisfying the commutative diagram

below:

UxR* —Q—»n"(U)

7!,,\\ lz

U

where 7o¢ =7 .

A cross section is a differentiable mapping y : M — E such that z(y(p)) = p for
all p e M .The set of all cross sections is denoted by I'(E). We note that
(i) fory,,w,el(E)and pe M,
W+ )P = v (p)+ v, (p),
(i)  for y el(E) and a function f € C”(M),
(v)p) = (Py(p).
Therefore, I'(E) forms a module over the ring C”(M). We note that in the case £ = TM ,

a cross section X defines a vector field on M.



