CHAPTER 2

TANGENT BUNDLES

2.1 Tangent bundles
Let M be a C” n-manifold and 7, M be the tangent space of M at the point p & M.
The tangent bundle TM of M is defined to be union of all tangent spaces over M, that is,

™=T,M.

peM

The projection mapping 7 :TM — M is defined by 7(X)=p forall X e7, M.
We can always write a point in TM as (p, X), where p is in M and X is a tangent at p. As a
result, 7(p, X) = p forany X eT,M .

If (4,U) is a coordinate chart on M, we have ¢:U — R", with x' =u'o¢g. Let

U =n"(U). For (p,X) in U, X=Z‘a,(§) Jlet ¥ =x'on and §'(p,X)=aq,.
L r

Define ¢:U — R sothat ' og=%", u" op=7' fori=1, ..., n. Then (¢,U) isa2n

coordinate chart on TM with coordinate system (z', ..., ", ', ..., 7").

Now we would like to see whether these coordinate charts are C”-related to each

other. Consider (¢,U) and (p,7). Let ¢ = (4, ..., ¢,) and ¢ =(g,, ..., @,). Then

3%_?" =(3| °a-‘v s 5»35")
=(ponof sy $omof !, B0, o hrop™) .

Now fori=1, ..., n,



$08" Py oo v @y, v a,) = B, 0 7(p, X)
=4(P)=¢, 20" o P(p,, ....p,, a,, ..., a,) .

where 9(p,X)=(p,, ..., p,, a,, ..., a,) and PPy cos Py @y e a)=(p,. ....p,)
is the projection function fromR* to R”". This shows that ¢ op"' is C” being a

composition-of C” functions.

Next,if X= 31,2 =3 P12
o dp I Op, B,

Buy 2@ (Prs s Pay @y o @) = B (P X)
n ,3¢1
=2.L—=(p)
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3,
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=)t o9 o (py, ... Py ay, .y a,) .
2", e

o9 (p(p))

This shows that 3,,” o' is C”. Hence the collection of all (¢,U) form an atlas for TM.
The natural projection 7 :TM — M defines the natural bundle structure of TM
over M, that is, for any chart (¢, U ), we can obtain the following commutative diagram:

uxr 47,

7o iz
U

where ¢ = ¢~ o(4, 1), I the identity map from R" to R”, thus TM is a vector bundle over

M.



We will denote by J.(M) the set of all tensor fields of type (r,s) on M and

M) = 3 (M), Obviously SU(M) = C™(M) and S(M) = X(M).

2.2 Vertical lifts of functions
We define the vertical lift of a C* function fin M as the composition of f with the

projection function 7, /" = f oz :TM — R, which is also C” on TM.

If there is no confusion, we will write S as f.

Let (x',..,x") be the coordinates of the open set U in M and
(', . X" %, L 5 or (R, ..., %", F', ..., 7") the coordinates of 7 ") in T™.
The function f' is constant on each fibre T,(M) and f"(T”(M))= {/(p)}. We also
have (g)" =(2)" (/)"

A I-form @ in M is regarded naturally as a function in M, we denote it by 1w . If

" "
we express @ locally as @ = Z(u,dx‘ , then 1w = Zw,y‘ with respect to the induced
i=l i=1

coordinates (X', ') in z7'(U). Thus for S eC™(M), l(df)zz":((?,f)fzﬂ A vector

i=l
field X e7,(TM) is completely determined by its action on functions /in C”(TM). We

can actually obtain the following proposition:



Proposition 2.1 [Yal, page S

A vector field X in TM is completely determined by its action on «(df),
f €C”(M). In other words, if ¥ is a vector field in 7M such that Xudf = Vidf for all
feC™ (M), then X =V .

Proof: It suffices to show that if Xiudf =0 for all f eC”(M), then X =0. Let

X= Z X! §T = ZY‘(?, with respect to the induced coordinate, where A takes value
A A
from 1, ...,n, 1, ..., 7. Then from Xudf =0, ZY‘J,(Z(&/)}') =0, which implies
A i=1

that Z(i’y'a,n,f+Xf5,,(7,f)=o or Z[ZP;'&,&JU\”&,,/):O. Since the

i it \ 1

equation holds for every [ eC”(M), we have X' =0 and X'j'+ X'j' =0 or

>

'$'=0 for any i. Hence for any point (¥',...,%", 7', "), where 7' #0,

M

&', .5, ..., ") = 0. By continuity argument, X' = 0.



2.3 Vertical lifts of vector fields

Let X e3,(TM). Then X is called a vertical vector Sield if Xf' =0 for all

vh

feC(M). If X =[;;J , then from X' =0, we have > X"3,f =0; which implies
h=1

that X" = 0. So

B o

Thus X is vertical if and only if its components in 77 (U) satisfy (*).
The vertical lift of a vector field X in M is defined to be a vector field in 7M,
written as X", which satisfies X' (10) = (aX)' for all o €3 (M). Let X' and o, be

bl
the local components of Xand @ in U. Let X" = (;h) . Then from X' (10) = (wX)", we

have

G X'7 +Y 0,X =Y 0,X',
1 I=l i=1

1=
2 (0,0 )X'7)+ Y0, (X - X') =0
1h=1 i=l
for arbitrary @, ; which will give us X' = X', and also X'5' =0 which implies that
X'=0 for i=1, ..., n. Hence the vertical lift of a vector field with components

| " . v (X" 0
X', ..., X" has components given by X' = )= )
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24 Vertical lifts of 1-forms

Let @ be a 1-form in TM with component @ , with respect to the coordinate in the
open set 7"(U) in TM, where A takes value from 1, ..., n, 1, .., 1. We write

o= ZE‘dE‘ . We say that @ is a vertical I-form if @(X")=0 for all X eI\ (M).
1

From @(X' ) =0, we obtain

Za,d;‘(ix’a,) =0,
7

i=1
which implies that ZE, X'=0 for any X' e3Ip(M). It follows that @, =0 for
i=1

i=1,...,n.Thus @ have components @ = (@, , 0).
Let [, g € 30(M). We define the vertical lift (¢f)" and (gdf)" of I-forms df and

gdf respectively by (df)" =d(f") and (gdf)" =g"(df)" =g"d(f"). Suppose that

® €Sy (M). We define the vertical it @" of @ by " =Zw,(dx’)'. where
i=l

= Zm,dx’ . Obviously " is a vertical 1-form and @" X" =0.
=1

We summarize some of the important properties of vertical lifts:

Proposition 2.2 [Yal, page 7,9
If X, Y eSy(M), , 0 €eI)(M), f €I (M), then
(0] X'r=o,

i)y (X+N'" =Xx"4+1",
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(i) ()" =" x",

(iv) [x' , Y"]:o,

Vi) (w+0) =" +6",
i) (fo)" =1 0",

(viii)  (ax")" =dx".

2.5 Vertical lifts of tensor fields
Having define the vertical lifts of vector fields and 1-forms, we now extend the
definition of vertical lifts to arbitrary types of tensor fields in 7M by requiring
(P®Q)" =P" ®Q" and (P+R)" =P + R’
where Q is any tensor field and P, R any two tensor fields of the same type.

In the following, we consider the vertical lifts of some types of tensor fields.

Tensor of type (1, 1)

Let F =3 F6, @/, F' = Y Fl(3,)" ®(dx')’ = D F/6; ®dx’ . In terms of
1=

i=

0 0
. r_
matrix, F' = (F,’ OJ .

=l

22



Tensor of type (0, 2)

Let G= X‘G,,dx/ ®Rdx', G = ZGJ,(dx/)v ®(dx') =) G dv’ @dx',
1= =1 ty=1
G, 0
vo_ it
G ‘[ 0 o)'

Tensor of type (2, 0)

. . , 0 0
H=3 1" ®:9,.H'=ZH”6-®5w"' =[ J
hyt J =l s 0 H’

Tensor of type (0, s5)

§= 308 d"® - ®dx",

fovody=t
S = S, @) @ B = Y, ® - @
Tensor of type (1, 5)

T= YT 0,®d"® - ®dx",

Sy

= YT (0) @) ® - @) = YT/ 5,@de® - ®art.

Jilh=t Jdyeody=1

For X, ¥ e 3;(M), with the above expressions of X", V", we have [Yal, page 11]

23



@) F'x" =0 for F e I|(M),

(i)  G'(X",¥")=0  for GeI(M).

From o' = (@', 0), where » e 3}( M), the differential of »", d(w") which is in

33(TM), has the following form:

d(@") =Y do,A di'

=Z§"2(5,w,)a7‘/\ dax'
A =1

= >.(8,0,)d%’ A d¥'
iy=1

=160, -dw)d’ ® dx',
1,4=1

v
(dw)” = (Zﬁ,w dx/Adx')
1.j=1

= Z(aw, -dw )’ ® di’
1J=1

=d(w").

This can be extended to any differential form 6 € I°(M), namely (d6)" =d(9").
The following is a simple observation.

Proposition 2.3 [Yal, page 12

For any differential forms  and 8 in M, (w A9)" =" AG".
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Now, we define an action, which is similar to contraction of tensor fields on M, on
tensor fields on 7M which will be used later. In the following, we will sometimes omit the
ranges of the summations where they are too laborious to write, we will only use the
symbol Z to indicate it, the summation for i, j, k, I, m, n, p, q, s.  etc are from 1 to n,
whereas a,f3, ..., 4, B, ... arefrom 1,...;n, 1, ..., 7.

Let S €3,,, (M), write

S=Y5) -g-_%@ ®%®dx’®dx" ® - ®adx" .

Suppose that X is a vector field. We define two tensor fields of type (1,s) in 7 '(U),

¥ S and )§ by

J J . }
hs:Zx’s,{;;;;{,;;@ ®W—h®df' ® - ®dr" and
=SSt 2@ 0l ®ar® . @t

VS‘ZJ’ Loy @1, F" x

with respect to the induced coordinates in z'(U). For Se3(M) we define

yyS=1=0.

For any S e3J,,,(M), if we define S, by S.(X,, ..., X,)=S(X, X, ... X))
for any X, ..., X, €Sy(M), then y S=(S,)". In addition, we have for any
[ €3(M), X, Y eINM), F,Ge3\(M), o, df o F €3] (M) [Yal, page 13],

M P =000 f" =0,

@ F)udf)=y (df o F), yF(df) = y(df o F), where (df o F)X = F(df, X).
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@)

(5)

6)

(O]

2.6

[X",y,.F]=0, [X".;/F]=7,F,
[;/,‘.F.y,.G]:O,

[7 WF, y(,‘] =y y(GF), where GF = Z GF/ §I—®dx‘ and the local expression

1. k=1

- 2 : < a .
of G, F are Gzl;ﬂG};®dx’ , F= Zf’,,"y®dx' respectively,

hk=1
[, 1G] = 1(GF - FG) = [ F, g],

@' (r F)=0, @" (yF) =0.

Complete lifts of functions and vector fields

We work in the same way for complete lifts, that is, we define the liftings of

functions, vector fields, 1-forms, and tensor fields.

Let f be a function in M. The complete lift of f; written as /', is defined to

n

be /=)= 370,/ . We shall wiite F for 350,/ . We have X' 1 = (7'
i=l

i=t

and (g =g /" +g" £ Thus, Proposition 2.1 can be written as

Proposition 2.4 [Yal, page 14]

Let X, 7 e 3)(TM). If Xr€ = 7r¢ forany f e 3)(M), then X =7 .

26



Let X = Z X' % be a vector field in M. We define X, the complete lift of X by
il 2
XrC=xn°.

h
Now, we look at the components of X°©, X":(;E] or

X = Z(,T”' 2 d ?;TJ with respect to the induced coordinates.
From the definition, X £ = (Xf)°, we have
W SBTCTINS I SN S PIPN
hi=1 {; h=1 hi=1
=2(7@x"o, 1 +7 x"6,6,7)
hi=l

for all f in C”°(M) from which X" =aX" and X'"=x"

. 2 é - (x*
X = [X*L @(‘—J x‘=( J
hz,,: a ) '

Thus

We have a few properties of complete liftings of vector fields [Yal, page 16]
(i) X+ =Xx"+7°,
[(OEENT2ONEN AP AP SN
(i) XM =X"rC=xn)",
i) "X =(ax)",
™ XUO=x

forany f e S3(M), X, Y eSy(M), & eI (M).
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Proposition 2.5 [Yal, page 16

Forany X, Y e 3y(M),
@M [x",r]=0,
Gy [x" ) =[x 7],

Giy  [x<r) =[x, v

Proof: We shall omit the proof of (i) since it can be easily verified.

Let / € I)(M). Then

[X". yc]fr - Xl'(y(‘f(')_ Y('(X"f()
= X" -roxn”
= (XN - (¥x)"
= (XY - YX)"
=(x. 7y
=[x.v] s

[X(. yr]f(' - Xryrfc’ _ erl/-r
= XN -rxn©
= (XX —(YxN©
= (XY - YX/)*
= (1)
=[x, ¥ re.

Thus [X", Y] =[x, 7] and [X, ¥°] =[X, ] by Proposition 2.4.m
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Proposition 2.6 [Yal, page 17

Let £, denotes the Lie derivation with respect to X and X,V eJ (M),
F €3,(M), @ €3}(M). Then
O [X F]=r @ P ey g F o
@ X A= rep,
(i)  F"XC=(Fx)".

< a . ny o .
Proof: Let X = ZX” — in an open set U of M, where (x', ..., x") is the coordinate
é

0
h=1

. X . .
system in U. Then we have X =[d\’"] with respect to the induced coordinates in

77" (U). Also, we have y, F = ZYF —, where F = ZF'—®dx’ Y= 2)" ?'(,
C

F' i

the open neighbourhood U in M. Now,

(X, F]= Z(X”%—r'é xr X0 oy O

WiTe F' & @' &'y
a &' o Za
+Z YF'@;/@A_YF' F &h_YF;IX &hvr
-Y r' — Zy F’ 7' s )
& ri = 7 F'
J &' ., 0 F o X" o
= X' F = )("Y’———Y'F’_—)
Z (;h @l &h @( 1 ﬁ' (;h

— ——

X'E oY + X'Y'o,F -Y'F'6,x')o, |
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& O
F=2, (F’—@ ')
£, \; { o ®d

n

N | N s b O IS O o X ;.J
= XFE)—®dx'-Y F'6,X" —®dx' + Y F ® —-d
Z(( I)d(/ g_:, G hZ_‘: 1 ar

7
ii= &

h
= [x”a,r,' -Fox v & ]i,adx’ .
hid=1 &' ) &

7 F = YV (X', F - Fo,x' + F;ﬁ,X")-{% ,
hy

4=

< h i 5
y“_,lF=MI='(X Y -Y'o,X')F, >

Therefore [X", 7y F] =y, & F)+ 7(x.nF - Similarly, we can prove (ii) while the others

can be verified easily. m

We state the following results without proof.

Proposition 2.7 [Yal, page 18
For G e 33(M), X,V eI\ (M)
i) G"(x",r"y=o,

(i) G"(x",r)=o0,

(i) G"(x,v"y=o0,

(v) G"(X°,¥)=(Gx, ).
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2.7  Complete lifts of 1-forms
Suppose that @ €3}(M). We define the complete lift of @, o by
® (X) = (wX)" . Now, we would like to determine the components of ¢ with respect

to the induced coordinate in 7' (U), where U is a coordinate neighbourhood in M. Let

(o:im,dx"m Za) dr' and X = ZX' (9 .
i=l

i=l

From o X = (wX)",

(@ X +@,00)= 359, (0,X")

i=l hi=l

= i(y”(a,w,)X' +713, X" )w,)

hi=l
for arbitrary XGS,',(M). Thus we have E,:Zﬁ”é,,w,:ﬁ(u,, ®; =w, or
h=!

0" = (A, »,).

We remark that there is a result similar to Proposition 2.4, that is, if @ and @ are
1-forms in TM, and if @ and @ agree on the complete lifts of arbitrary vector fields in M,
then they are equal. The proof is also similar.

Now, we turn our attention to some simple consequences arising from the definition
and the expression for components of the complete lift of a 1-form [Yal, page 19]:

(0+0) =0 +6°,
(o) =" +1 o,
o X" =(aX)",

0 X = (X)),
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forany X e 3y(M), 0,0 e S(M), [ eIUM).

The following are some more results.

Proposition 2.8 [Yal, page 20]
@ @'(yF)=0,

(i)  @"(F)=0,

(i) 0" (y  F)=(w0(FX))",
i) @ (F)=y(w-F)

forany X eSy(M), o eI\ (M), F eS|(M).

Proof: Let w=) wd', X=)X'0,, F=YF3®d' in the coordinate
i=l i=1 ig=1

neighbourhood U of M.

(i)

o' (yyF)= (im.dx”) (iF;x'a,.)
h=t

ij=t

= Z‘”h‘i’?h(i"}x"’i]

1=

) o' = imhzﬁ"[if’,’yfé,]
(ii) het iJ=

=0.
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(iii)

o (y F)= i(am,,df" +n),d;7")[yx(iF,’i, ®dx’)]
=l i
=3 (0,d" + o,d" )( 3 F,’x’a,]
=t i

= Z":w,F/'X‘

1=

=(@(FX))".

o () = Z(aauﬂ + o,dy )(ZF’ 15)

e

i,

M;

o,F}5’
1

'(gm F‘)'
{gare)

e

<
i

n
M-

=y(@oF),

where @ o F = F(w) . (iv) can be proved similarly. m

2.8  Complete lifts of tensor fields

By taking account of
(g[)(' =g4"fl‘ +gl'ft“
(ﬂ)( =f¥ X('+f('XV s

(o) =f o+ fCa",
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where g, f are regarded as tensors of type (0, 0), X tensor of type (1,0), @ tensor of type
(0, 1), we extend the definition of complete lift to arbitrary tensor field by imposing the
following conditions:

(PR®Q)Y =P ®Q"+P ®Q  and (P+ R) = P* + RC.

We now consider a few types of tensors and the p of their 1

liftings.

Tensor of type (1, 1)

Let F" be the local components of F, that is, F = ZF/’ i,,@dx’ . Then
&

hi=1

i@dc')r +(F,*)"(§®a')lj

=
T

(
(—(77)' S+ Eh(%)r ® (@) “W(%)r ®(a’)")

& E)

Tensor of type (0, 2)

Let G = iG”dx’ ® dx'. Then

it
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G = (G, (@’ ®d') +(G,)  (d’ ®dx')’)

=

Z(G &' @dy' +G,dy’ @dt' + &G, (dx’ ®dx))

E

&

- s G
or in matrix form G = (GM)= [ Gﬂ 0") .
0

Tensor of type (2, 0)

Let H= ZH/'( ‘ ®§).Then

ij=t

- HrEog) (o))

_3 P22 % 00 \,aqm l o0
_,z.( (rﬁ?’®§7 oyf®ar')”9” ® J

H"
or in matrix form H® = (H"”) [:ﬂ ﬂ*l”)'

Tensor of type (0, s5) and (1, 5)

Let § = Zs ,dx" ® - ®dx" e3!(M). Then

iyl

5T = S, ) (" ® - ®dr') + ZS, S ® - @axt)
fime)

= zfx LA ® di"+z Zs, WA ® - R ® - @i,

[t =1,

Similarly,
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Let T= Y 1 L odt® - ®dx" €J!(M). Then

el
T = Z T_,—h®df’ ® - ®dz" + }: q, L es® - @
bt K bl
DI ,.Eh—@tﬁ’ C®&E R @ ® - @
=) e

all the others being zero, with respect to the induced coordinates in 7M.

Now, let us have a look at some properties of complete liftings of tensor fields.

Proposition 2.9 [Yal, page 23]

(i) FCX" =(FXx)",

() F'X=x),

(i) FOXC=(FX)",

vy F'x"=o,

v F'p,n=o0,

i) Fom)=

(i) FO(ryT)=y ((FT),

(i) FC(OT) = y(FT),

where X € 3((M), F, T € 3)(M) and (FX)a = F(w, X) for anyw € I} (M).

roof: We only consider case (vii) here.
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2 a a é 2 é
FC(y T)= (éf"—@df’+l~"—®df’+l”—® '][ X"T’fu)
(ry1) ,Z| 3 =T ' 57 8F PR
u a
=2 FX'—,
hig=1 @]

B é &0 0
FT)=y, F/ —®adx' T, —®d ”)
¥ (FT) rv\[(;ﬂ,a, x](za ix

. s
=n[ 2R ;@dx“]

hig=1

e a
=Y X' F

hij=1

Similarly we have the following results:

Proposition 2.10 [Yal, page 23

(i) GX",r"y=o0,

() G, r)=(Gx, 1),
(i) G(X, ¥")=(G(x, ),
) G ¥)=(G(xX, )

forany X, ¥ e 3y(M), G e SU(M).

We also have (dw)” =d(w®) for any o = thdx" € 3'(M). To see this, we

h=1

first consider d(w ). From o = (@,) = (dw,, ®,) , we have
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d(0€) =Y. 0,® 4dx" Adx*
AB

= 3 (3w, A" + (8,0, )dF* Ad5"

hk=1

+0; (0w, )dy* Adz" + 6 0,d5* Ady" )

=1 Z(ﬁ(ﬁ,m,,)(zﬁ‘ ®dx" —dx" @dx*) + 6,0, (dX* @ dy" - dy" ®@dx*)
Pre)
+0,0,(dy* ®dz" - dE" ®dy*) +0)

1Y (A6,0, - d,0,)d" ®dE" +(6,0, - G,0,)d" @ 7"

hk=1

+(8y0, — 0, )d7* ®dz*).

Next, we consider the complete lift of dw , where

do = d(im,dx’]
i=l

=Y 8,0,dx’ Adx'

h=l

=13(0,w, - dw))dx’ ®adx',

(=1

) =300, -0 Xe! ®a'Y +1 500, - 40, X' @)
1= ij=

=12 A0,0, - )(dx)" ®(dx")")

ig=

+1320,0, -, X(dx’) ®(dx')" +(dr’ ) ®(dx')")
INE)

n

=13 (A0,0, - 0 )’ ®dt' +(0,0, - d0,)d5’ ®dy'

ig=

(0,0, - 30 )y’ @dz' ).

Thus we see that (do)* = d(w®) forany @ € I (M).
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Proposition 2.11 [Yal, page 24
Let S be an element of I%(M) or 3}(M) and X an element of J(M). Then
@ S, =0,
G) (S, =Sy =7,8,
(i) (8")y =(S¢) =7,S,
(i) (59 ="

Proof: We will prove the case for tensor of type (1, s), the proof for tensor type (0, s) is

similar. Let S‘" . be the components of § in the coordinate neighbour U of M. We know

that the components of S and S, denoted by S f , and 5 respectively, are given by

-

s = Z Sy ,Iﬁ,,mtf‘@ - ®adx*

= Z s, . ‘i@df’ - ®di"
ho F
5= 3 5, L ow e . adt
- -
BA,...A
= > 8., X,.@d" ® - ®dt'+ . &), L Q@ ® - ®di
hiyohy =t L ‘3;
1YY 5, L& ® - Od Od B ® - B

We shall write (S"(X")(X"", ..., X")=8"(X", X", ..., X"), where
X', ..., X' €3 (TM). Then
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59 =s“[k_ x* —aT)= > xtst, F L od®

<

®dx"' ® - Qdx",

n
M.
&
>

1 T
LOrA— F

v
(s,,)"=[ > S X"i,,®dx""® ®dx")
Pddyyoehy =t &
= Y S X LRk e e,
B dy yedy=) ‘37

yeS= Y S XLt . ®dr.
By dyyedy=! @
80 (S =(S") 0 =(S) =7,S.
n a é
S) . =8€ (X‘ 't )
D =8 X X 2+ &

=y s,” ,IX“%@ME"-' ® - ®dx"

ey =

+ Y S XL ed e ®dr
hlpod=t @

+ 2 st hax"%m&’-'@ o ®dzh

By =

-1 n
+3 T S S BENE - Od B B ® -

[y

= Y s ,‘X‘-ih®dx’—"'®~- ®di" + ) a(sf,,,,X'-)i,&ﬁ'--@
Bty =1 & hi ! F

sl n
+Z.A,Z, |9, L X" 5@«&" CQdE" Oy QdE @ - Rdi"
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.
8y) = ( Z SLaXt = Lo ® - ®dx"]

X)L @dr ® . @t
Z ASLW X 25

o
+ Z ShX LR ® . e
By &
Z Y S XL ed® - ®dt @ @ ® -
TV bttt @5

Thus (S,) =5 . m

Proposition 2.12 [Yal, page 24

Let S be an element of I°( M) or ‘J:(M).Then
0 S (X, X X X, X)) =0,
i) S"(XS, o XO)=(S(X,, 0 X))

(i) SOXS, L X =(S0x,, - X))

forany X,, ..., X, e3y(M) and X,, ..., X, e S}(TM).

Proof: We will prove the case for S € J!(M).

-3 5, L @ ® .. ®d"(X,, ..., X, Z

h=1
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W ®dE ® e @k (X,, .., X, X', X

X< @h .

PRTI

® dx"



sUXS, . x“)

= Z s, ¥ 2L o @ ... ®,i;--(z(x:ah+dvfa;)...., Z(X,"ﬁ,+d¥,”ah))
I = h=1 h=1
o é
= S Xf X =
h_:..z.l,-l ! @.
n a v
(SCX,, ..., X)) =[ z s, X X ac")
hi,..

. s
- .l_,Z =IS": IIX’I"H X"g

SUXS, L X9
=y5 ., j;@df" ® - ®df"(2(x,"a, LB, . S(XPS, +(7x,*aﬁ)J
h=1 h=1

=y (sﬁ LXE x"i+as,* ,,X,"m){‘"i,,
LA ﬁ @

FUSE K XU AKX X ih)
= ¥
=Y (s,f___,‘ PO (e P x;v)th
Bipdy= & '

¥
(3 s mn g

Proposition 2.13 [Yal, page 25

Let g and y be any two differential forms. Then
B (PAy) =9 Ay +0"AyS,
(i) d(p“)=(dp)".

Proof: We have
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(PAY) =1 p®y -y ®p)°
=10 @y +9" By -y @y —y" ®9")
=1 @y -y " ®p 19" @Y -y ®9")
=0 Ay" + 9" AyC.

Let ¢ be any differential form with local expression
@ = fdx"A - Adx",

dp = dfAdx" A -+ Adx", [ e SNUM).

Then
(de) =(df)“ A(dx"A ... Adx")" +(df)" A(dx"A ... Adx" ).
Since
@) = (X@Na)
i=1
= S (AGSIE 40,fa' |
d(f)=d(d)
= ZaA(q)df‘
A
= (AN 42, 1)
i=l
and also
@)’ =di)",
then
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()" = (df) A(dx" A ... Adx")" +(df)" A(ds“A ... Adx")
=d(fONEx"A ... Adx") +d(f")A(dx"A ... Adx")C
=d(fON@" A ... Adx")" ) +d(f" Adx" A ... Adx")C)
=d(fCNdx"A ... Adx") + [V A(dx"A .. Adx")C)
=d(fdx"A ... Adx")¢
=d(p“).

2.9  Lifts of derivations
Recall that a derivation D in M is a type preserving mapping D :3(M) — I(M)
satisfying
m D(S+T)= DS+ DT, forany S, T eS.(M),
?2) D(S®T)=(DS)®T +S®(DT), forany §,T e (M),

(3)  DI=0, where I is the identity tensor field of type (L, 1) in M. We write

5
1= z(—, ® dx' locally.
=l d

Furthermore, there exists a vector field P in M such that Df = Pf, for any

S e3(M).
al" . . . . .
Let x be the coordinate vector fields in the coordinate neighbourhood U in
=1

a a " a|"
M. If we put [{§)= §Q," e then for dx'})7,, the dual 1-form of {E} , we have

i=l

D(dx") = Z(—Q/‘dx’). For X =) X" % (M) and 0 = Y w,dx' eIV(M),
=1 h=1
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DX = Z{(DX )‘+x (D;,)}

X'
=Sy xt s
,‘T-"( & o d:‘

Do = Z":((Dm,, Ydx" + @, (Ddx"))

= Z(P‘ +o,(-0))dx" .

1h=1
(P", Q) are called the components of D in U. We define two vector fields in ™,
denoted by D", D respectively, by
D' fC=(ny)",
D f¢ =y(Ddf)

forany f e Jy(M).

Y
Let (~ ] be the components of D" with respect to the coordinates in 7' (U).

>3

Then
o= D"IZHIZF'a,f
i Z(éfl"?ﬁ/hﬁf wonp).
(" =§,nw‘

n

we have Z(Z @,0.ND +@, f)57) =3P/3,f for arbitrary £ € S0(M). This

J=t N =i

g

=}

implies that D" = P*, B" = 0. Thus DI‘{[)"J'

45



3

If D¢ has components (D] in 77'(U), then

5’!
D =LA@ AN B @y . m

7(Ddf) = 7{ Z (P'o,0,1 +(—Q;'5;.f))dr’}
Jh= -

=3P f - 7000 @

Jh=t

=S PG - 30 .
a1 =

Since (1) and (2) are equal for arbitrary [ € S)(M), we
" P

e E(-y’Q,”). D" = P". Thus D":[_/i:y,g:].
Consequently, we have the following results [Yal, page 28]:

(i) (D+D) =D/ +Dj,

(i) (D+Dy)" =Df +Df,

@iy (/D) =/"D",

(v) (/D) =/"D",

where D, D, D, are derivations in M, f € 3(M).

Proposition 2.14 [Yal, page28
@ D's =0,
i) D'r=(f),

@iy D" =(DfY,

46
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(iv) DS =y(Ddf)

forany f e 3)( M) and any derivation D in M.

Proposition 2.15 [Yal, page 28

Let D;, D, be two derivations in M and (P,Q0), (P,0}) be the components of
D,, D, respectively. Then

@ (D, Dy]=0,

(ii) [D), D{1=[D,, D,1" if O} =-6,P foralli,h=1, ..., n,

@iy [Df, Dy)=[D,, D,
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(ii)

D, Dy1fC =Dy Dy [~ Dy Dy /€
=D/ (D, /)" - Dy (D, /)"
=0.

Fromi our assumption that Q) = -3, P forall i, h=1, ..., n,

(D D)/ =D Dy € - DD f€
=D} (yD,df )~ D5 (D, /)"

- D.'(r(Dz(iﬂ,fdx/))) -0,

=D (r(i P(8,0,/)dx' - ig:,(ahf)dxv) -(D,D,f)'

D."[iy'(f’:(aha,fwa, P:)ahf)) -(D,D,f)"

= Y (R (P8, 1)+, P13, 1))~ (D,D.f)

1h=\
-$(ranan)-wmsy
i=1 =1

=(D,D,f)" ~(D,D,f)"
=D, Dz]f)"
=[D, D,]" /€.
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(iii)
[DF. DS1/< = D Df /€ - DS DY f©
= Dy (yD,df ) - D5 (yD,df )
= Df‘(Zﬁ'(&”(aﬁ,f) - Q:,ﬁhf)) - D,"(iﬁ‘(f’.”@a,h - Q:af)]

hZ.IfP‘y (P (8,0,1) = 048,1) - QT (PL(8,8,1) - 046, /)
~ B VOB G,8,.)) = 048, 1) + QT (P(8,0,1) - Qb o))
,Z..y (PlOU(P}(8,8,1) - 048,1) - QP (8,0, 1) - 2, /)
=Pl OUPN8,8,1) - 0o, 1) + Qh(PH (8,8, 1) - 0o, 1))
=r§f!’.‘ﬁ.(i’,*(a,a/f)—Q:,ahf)—Q.‘.(P:(ahﬁ.n—g:.ﬁhf)
Rk, OS)= QB S )+ QLR (8,8, 1)~ Oy 6,/ )’
; (LA(P(8,0,/)- Q4o f))dx‘+Z(P*(Mf) 01,3,/ )-Qidx')
~[PA(P(8,3,1) - QLo Ndx' —E(P"'(f%ﬁ.f)-Q.".ﬁhf)(—Q,',d\"))

=7 L ADAPB,8.0) - G0,/ Nox' +(PL(8,0,1) - 06,/ N Didx')
ih=1
~[Dy(P!(8,0,)~ Qi8N dx' = (B! (2,8,1) - 06, f X Dyx')}
=y ij (DII(P(2,8,/) - 0}y6,1)dx' 1~ D,I(P(8,6,1) - 01, /)dx'])
i h=)

=y S ADIPG L1 + 320, X-Clde™]
i=l h=1
DR S ) + 35, 1(-0bde' Y]}
=y DD, V' +(0,f XDy
i=l
- DG SN’ + 3,1 (Dydx' Y]}
=y(D,D,df - DlDldf)

=y(D,D, - D, D,)df
=[D, D,]° /.
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2.10  Lifts of Lie derivatives
Let £, denotes the Lie derivative with respect to a vector field X in M. As a
derivation, £, has components £,:(X", —3,X") where X" are the components of X.

a

. 12 .
Since &£,/ =Xf and l,;:[/\’.y

. 0
], we have () =(X"J and
(ah

X" X" , )
@) =g Fa,x" =( ).Itisobvious(hat (£,)" = X" and (£,)° = Xx°€.
i=1

We note that if the derivations in Proposition 2.15 are Lie derivatives, then the

in (i) is ically satisfied.

2.11  Lifts of covariant differentiations
Let V be an affine connection in M. The covariant differentiation V¢ with respect

to an element X of I} (M) is a derivation in M. Since

’ l u
Vi = X Vy27= Zx'rj S and Vo (d) =~ x/rhd
Jh=t Jd=1
where X" and Fﬂ are respectively the local p of Xand V in M and [ is in

J5(M), the covariant differentiation V , has components
V(XX .
J=1

Thus, we have

0 X'
(V) {X”] and (V«‘)(:[—iz\”i’l—,’;]

ij=
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with respect to the induced coordinates in 7M.

Proposition 2.16 [Yal, page 30]

(i) V) =x",

i) (V) =X —y(x)

for any X e J;(M), where ¥ is an affine connection defined by %, X =V, V+[Y, X]
and VX isa (1, 1) tensor field defined by ({7X)Y= \A7,X forany X, ¥ eS{,(M).

Proof: The first equation is obvious. We will now derive the second equation. We have

V) = i(x”—-- X ‘9
h=1

Ivel é’
Since
VX)Y =V, X
=V Y+[Y X]
a
= Xy —
MZ_} = amz Y
%;XZ a0
= Y'(—+ X'ty s
Z Z ‘.*h
we have
VX = Z(—+Z){f —®dx'
th=1
Therefore

sl



(Xp (X)) = [Z(X" 2 vt —) Zy (——+ZX'r,,)—]

3"
— h 3 It ni)
_(Zx o Z,\'yr,/@A

h= =l

I

(V)©.

Corollary 2.17 [Yal, page 30

For X e 3,(M), V an affine connection in M, the derivation V , has the properties
(V)" = X" ifand only if V.X = 0. Moreover (V) = (V) =0 ifand only if X =0

inM.

2.12  Thelifts of a derivation determined by a tensor field of type (1,1)
If a derivation D in M satisfies the condition Df =0 for any f e3)(M), then D
determines an elements F of 3}(M) in such a way that DX = FX for any X e3y(M).In

this case, D is denoted by D, and is called the derivation determined by F.

If F" are the local components of F in M, namely F = ZF," %@dﬂ , then D,

ih=l

has components D, :(0, F").

Let G, F € 3{(M), and G}, F" be the local components of G and F respectively,

ie. F=YF }i &, G=YG —®de We denote the tensor
ihet e
Z G\F, —®dx’ by GF. Then we have

ihk=t
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Proposition 2.18 [Yal, page 31

[Dg, Dp)= D p, forany G, F € 3|(M), where [G, F]=GF - FG .

[Dg, D)X = DgDy X = DDy X
=D, [ZF X' ‘3) (iG,x' ]
L h=1 S k=1
Z GrF X' )—— Z (G’F"X’)—
& Jh=1

ihk=1

=3 (G'F| - GF")X’

D, nX =[G, F1X
=(GF - FG)X

-3 (GF - aEnx 2.

ijh=t

Proposition 2.19 [Yal, page 31]

Let G, F € J)(M). Then
(i) (D) =0,
(i) (D) =-
(i) [(De), (D) V= (DG 1) -
Proof: Since we know that D, has components Dy :(0, F'), where F" are the local

components of F in M, from the definition of lifting of derivation, we have

53



; 0) -
0 (D) .(0 =0,

0
(i) (D))" :[_z":ylp‘h

i=1

< 3l
==Y E =),
(iii)  from Proposition 2.15 and 2.18,

[(Ds) . (D) 1=[Dy, D)
=(D[G.F|)r'

Next, we consider the curvature tensor R of the manifold M. Then there is a

derivation Dy y.y, determined by R(X, Y), considered as a (1, 1) tensor. We have
Dpxn =V Vy1=Vix - *)
Thus by taking the vertical and complete lifts of both sides in (*), we have
0=[V,,V,] = (V. y)" and
(Dpex 1) =V, Vi1 = (Vi )C
From (D, )" = —yF for F e 3(M) we have
RN =1V, V1= (Y

Now, from Proposition 2.15, we have the following proposition.

Proposition 2.20 [Yal, page 32]
@ V)" (v)]=0,
(i) (V) (V) 1=y, ifand only if V,¥ =0, for any Z e 3 (M), ie. Vis

a parallel vector field.

54



(i) (V)L (V) D=1V V1 = (V) = IR(X. D).

2.13  Complete lifts of tensor fields of type (1, 1)

We will first prove a useful proposition:

Proposition 2.21 [Yal, page 33
Let §,7 be clements of 3I°(TM) or SI(TM) where s> 0, such that

S LX) =T(XE, LX) forany X, ..., X, €3 M). Then § = T°.

Proof: Itis sufficient to prove that if S(XC, ..., X{)=0 forany X ,..., X, e 3y (M)
1 0

then § = 0. We shall prove this proposition by induction.
The case s =1 has been mentioned in page 31. We assume the result for 5= 7.

Let Sed, (TM) such that S(x!

G R

X{)=0 for any

X X, X e 3,',(A1). Take an arbitrary X, write

s

Sx5, X,y ,?‘):s‘:“(},,, .o X)) for any X, .., X eI (TM). Then

Sv\,'“

€3, (TM). Since S (X1, .., X()=8(X5, X,y X()=0 for any
X,y X, €35 (M), we have §_m =0 by the induction hypothesis. Again, for
arbitrary A7,,. N X’, e 3y (TM), we write
Sy XX, =5(X,,0. X, ., B, Then  §(X,, ... %)e3 (Tm).

Since (3’(/\7,,. )7,)) . Y,)=0 for any X,,, €JL(M), we have
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The complete lift of the identity tensor field / is the identity tensor field of the

tangent bundle:

I =i(i®dx’)(
o
” v c
52 s (2) o)
i .
=Z(§T®ay'+§®df’)
i=
y
- ®ds'
52

Moreover,

=32 e
X

Thus we have /" X" =0, 1" X = X" forany X eS)(M).

Proposition 2.22 [Yal, page 34

Forany F, G € 3|(M), (FG)* = FCGC.

Proof: Forany X e3}(M),

(FG)“ X© =(FGX) = (F(GX))¢ = F(GX)®

=F°G°X°.m
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Corollary 2.23 [Yal, page 35
If P(1) is a polynomial in one variable t, then (P(F))" = P(FC) for any

F eSi(M).

2.14  Complete lifts of tensor fields of type (0,2)

Let G € 33 (M). If G, are local components of G in M, then G has components

G G, Gll)
G, o

with respect to the induced coordinates in 7M.

Let g be a Riemannian metric in M. Then g = Zgl,dx/ ®dx' eI (M).
Ja=t

Proposition 2.24 [Yal, page 38]

If we write ds? = Zgl,dx’ ® dx' =Zgl,dx’dx’ for the Riemannian metric g in

Ja=t Jam

M, then the complete lift g of g is a pseudo-Riemannian metric in TM.

Moreover g = 3 2g ,&/dx' , where &’ = dy’ + > 7'T,ds’ and T}, being the

Ja= k=1
Christoffel symbols formed with g

Proof: We already know that
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= D (&,dx'dx' +2g,dy ")
Ji=1

"
=2 (7 g, de dx +2g dy'dx') .

Ja=1 k=1

With 3,8, = 3 (I} g, +Thg,),
h=1

= D&, d¥ ®dv' +g,dy’ ®dF +g,dv! ®dy')
i i J

Ja=t

= Z(Zy (Tygw +Tig, ¥ ®dt' +g,dy! ®d¥' + g,d’ ®dy')

Ji=l hk=1

= Z(Z(y Ty g,d%’ +g,dy ’)®df'+¢E’®(Zﬁ‘rﬂg,.tif/+g,,df’))
k=l
Z [[iy‘r,;dzh@"]@dfwa' [Z L e 4 D
hk=1

= Zg,.@’@rﬁ’wf'@@')

Jamt

= iZg,,ﬁ/ﬂ’-

ji=1

2.15  Complete lifts of affine connections
Let M be a manifold with an affine connection V. Then there exists a unique affine

connection V¢ in TM which satisfies

€ y¢ =(V, D).

We verify this by using the comp of the ion. Let I'Z be the components of V

with respect to local coordinates (x', ..., x") in M and denote T4 as components of V©

with respect to the induced coordinates (%', ..., 5L F") in T(M). Let X, Y be
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arbitrary vector fields with components X” and ¥* respectively, with respect to the local

vh h
coordinates (x', ..., x") in M. Then X and ¥ have components X : X = ¥
b X"

v v
and Y¢ :(’7‘] = [(?y") respectively. Note that

i(f/( +Z(r VAT )+ X/ (o,7" +Z(r V' 4TiT))

=1
=X ay"+2r ¥,
=1
from which we have
r=r), F]’;:F[’;:F],’;:o,

=h b TR TR o_ b

U=aj, T =th=r}, =0

V is called the complete lift of the affine connection V to TM.

If (z', 2%, ..., z") is another set of coordinates in M, we obtain another set of

functions {f}} by

o )
V.ﬁ§=zr’:a'

and they satisfy equation (*) on page 11, namely

. & & d‘ Z P x° &'
Ve Al A fe a'al &
Let (', 2%, ...,2",2', 2%, ...,7") be the set of coordinates on TM with respect to

(z',2',...,2"). Then we have the set of functions  {[}}  defined by
4
’” (}i‘ Z m ri‘ » whero
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We find that

&P Et

T+
A

ibc % & &

% &t LI L . i & & F* —

A E e a w a CEE A A
& & &t & & &
+ - [“
,;ﬁ’ EZ ,Z| & a &

zL" 2’.;,2 7% &t
ﬁlﬁ] & ~ Ea& ‘f"
& & F* Iz &t
e
b &' & &S +zd’¢2/ &
& &t at Fx" &t
= r‘
a»u&/ & &° +Z&&' &

5 &i L L ﬁ‘_ . L 3 “fi_

— = rs+
4 Zlci & & " L E A &

‘in &b tf‘

ab

n e b sk
Z Ty Z&d?cl—

ab & a' & LaEa x

Ix° Ly
+§&’cz’ &° +.Z(z'&' F

& & & Z %
b & & & Ta [ E &"
noA& &t @t Fx ot
= Z2Z e gxr 2z
@ & & +Z&‘a/ &°
=1} =T},
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& & a

&' x® (Zi e 32)7‘ &i L 3 &B ﬁi— n
— =T, + — = — T4+ —_—
Gead & &" Z,:(i’&f & ,Z. E & & ,,_,,Z:H&' & &
&F & a . & & #t o,
+ F T 3 & E
b & & & LE E &
e e N N S
ah

n_b,(=|ji—15 & aben &' E' XS

Fx F & PR &

+ 3 — )y —— =
Etz'&' &° Z&’ﬁi’ &
EEREF . L&A
= T _/_Trib Z —I_f l,,-h
abemt & E FE aben &' & E
n fﬁ d‘
+ ) ———
.,Z,.:as‘(z' &
a b l *
& & rs "'Z Fx &

TLd a2 A a
= r‘ = rl.:,
similarly for the rest of the (I‘,,r) and {T,r}.

From the above computations, we can see that the families of functions (F »c) and

(T} satisfies equation (*) on page 10, hence they define the connection V¢

Proposition 2.25 [Yal, page 41

If T and R are the torsion and curvature tensors of V respectively, then the liflings
T and R are the torsion and the curvature tensors of V° respectively.

Proof: From Proposition 2.5, Proposition 2.12 and the definition of the connection V° we

have

TXC, Y =(T(X, Y)°
=(V_\Y—V,X—[X, Y])C
=V Ve X o [XC, ¥y,
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RUX, Y)Z = (R(X, 1)Z)¢
=(VyVyZ-V,V,Z2-V,, ,2)°
=V VG Z€ - VeV e Z€ — U ye yeZ€

forany X, Y, Z e 3;(M). Thus the proposition is proved. m

The components of 7'and R are respectively given by
Ty =0 -1,
Ry =,T) - 0,0} + 3 (TAT, - ).
=l
Since 7 e 3y(M) and R e J}(M), then from page 36, the components 7.4 of T° and

Ry of R are given by
=1y,
L=an, T} =1), T} =17,

no g
7 oh h Bk h
Ry = Ry’ Ry = Ry,

b hom ok L] h
i = Ry ) Ry, =Ry, o = Ry

=

all the others being zero, with respect to the induced coordinates in ™.

We now consider the action of V< on f e 33(TM) and & €3)(TM). Since V©

is an affine connection on 7M, it follows that V© vf =X for any X eS)(TM). Thus we

have [Yal, page 42]
Ve ff=Xx"r" =0,

Vr“\‘, ./—(' - erc
=(XN"
=V N,
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VO pt =Xy
=(XN"
=(V. ),

V("\‘,f(' = X('f('
= (X))

L=V
forany X e (M) and f e IY(M).

Furthermore, for any X, ¥ e 3\ (M), let X", ¥* be the local components of X, ¥

respectively. Then [Yal, page 43]

Verr' = Z(x/a 7', +Z(xfy'r G+ X (¥)Th ;)
Jk=1 i=1

=0,

Veur©= Z(x/(a Y, + X/(0,0r*)8,

Jd=t

+Z(X’Y (l'ﬂﬂ +Fﬂ6 )+X/(éY’)(I' A +l"ﬂ(9‘)))

i=

) (X/(0,Y")o; + (X’Y o))
Jk=1 /
i( X/, y')+ZX/Y'r;;a,

JAE i=1

=(V 0",
YOy = i(xf(a,y‘ ); +(@ Y2, 1),
+Z(X/Y‘(r,,a +r/,a )+(5X')Y‘(r a, +r,,a )}
= Z(X’(i,Y‘)+ZX’Y‘F;)55
Jk=1 i=l
=(V,vy)l‘;

VO =(V,1)°.
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Since Vv and Vv are covariant differentiations with respect to X' and X¢
respectively, then for any @ € /(M) and X, ¥ 35 (M), [Yal, page 44]

(Vv @ )W =V (@'Y ) -0 (VEr ¥F)
=V (a)) -o" (V1)
=0,

(Vr o) =V (@Y ) - (VEx ¥C)
=V (o)) -0 (V, 1)
=(V (@) —(@(V,1)"
=((Vyo))' =(V, )" 1",

(Vx@" )V =V (0" ¥ ) - 0" (VExe¥C)
=V (@) -(o(V,1)"
=((Vyo)N) =(V,0) 1°,

(V(,\" a)(')y(‘ = V(,\" (wryr) - (Z)C(VCX' y(‘)
=V (@) - (V1)
=(Vy (o) -a(V 1)
=((V o)) =(V o) 1.

Thus

Vo' =0, Vo€ = (wa)l"
Vo' =(V,0)", Vv val =(V,o)°.

As an extention of the above results, we have [Yal, page 45]

Vey K" =0,

VOV KC=(V, K)",
Ve K" =(V,K)",
VO K =(V,K)C

for any tensor field K in M. Furthermore
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VK" =(VK)", "
VK =(VK)©.

Proposition 2.26 [Yal, page 45

If V is the Riemannian connection of a manifold M with respect to a Riemannian
metric g, then V is the Riemannian connection of TM with respect to the pseudo-
Riemannian metric g .

Proof: We already know that V< defines an affine connection on 7M which is torsion free,

from (**), we have Vg = (Vg)“ = 0. This prove the result. m

We observe that the above result is also true for a pseudo-Riemannian metric.

2.16  Horizontal lifts of vector fields

In the previous section, we have already defined two types of liftings of tensor
fields on M to TM, the complete and vertical lifts. We shall now consider another important
type of lifting, called horizontal lifis of tensor fields. In this case, an affine connection will
be needed. Therefore we assume that the manifold M we deal with is an affine manifold,
namely a differentiable manifold with an affine connection.

Let / be a function in M, y the operation on tensor fields defined on page 25 and V

the affine connection of M. We write Vf for the gradient of fin M. Then v, =r(Vf).
We now define the horizontal lift /" of f in Mto TMby f" = f€ - V,f. Then

we have /" =0.
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Let X e3J,(M), the horizontal it X" of X is defined by X"=X-V X in

TM, where V. X =y(VX).

Suppose that X and V have local components X* and I'* respectively in M. Then
X" 0
X = ((7}"') and V X = i)—//len with respect to the induced coordinates (%", ")
=1
inTM, Vv, X" being the covariant derivative of X" :
. n
V, X" =5, X"+ z‘:r,‘;x’ .
=
We shall denote the horizontal lift of X in component form as follows:

X" . .
X"= [_Z":F»X,],where YOX =YXy,
! i=l ij=1

i=1

thatis, I} =I5/,
i=1
A vector field X is said to be projectable if there exists an element X e 3!( M)
such that X — X is vertical, then X is called the projection of ¥ . Thus the horizontal lift
X" of Xin Mto TM is a projectable vector field with projection X.
Recall that V¥ =V, X +[X, V],

VY= Z[x'a,y* + nyx'r,",]a,. *)
j=1

Lh=1
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Since V is an affine connection in M, then ﬁxf:Xf and from (%),

- L] -
v,a,:Zx'r:ﬁ,. Thus V, as a derivation in M has components

ih=l

VX:(X". ZX'F}) . The complete lift of the derivation \A7X s (\‘7),)" is a vector field in

TM with components

Xh

.=l

and this coincides with X" . Thus X" = (V)" forany X e I\(M).

We can see that the components of X" satisfy the following equations

h
b *%

b

;‘/-h
where we write X":( - ) .
X

The horizontal distribution is the set consisting of all the vector fields that satisfy

(**). Any vector field in this distribution is called a horizontal vector field. Thus a vector

vh

field X in 7M with components Y(:.\Y;J is horizontal if and only if

"4 X/ =0 forall h=1, ..., n
i
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Since V, X = y(VX) e 3,(TM), then (V, X)f" =0, (V,X)f =y(df oVX) for
any f e I0(M) and X eI (M) [Yal, page 81]. Moreover, for any X, Y e Sy (M) [Yal,
page 89]

[V,X,V,Y]=-y(VXVY -VYVX),
(X", V,Y]=y (V") =(V 1),
(X, V, 1=y, (VD).

We now look at some properties of the horizontal lifts of vector fields:

Xli/l’ - (/\'(b —V,X)f"
=(XN" -V, x) 1"
=(xN",

Xllfr' =(X( —V,X)fr
=X[C-,X)7C
= (X)) =y(df < VX).

For the Lie product, we have

Proposition 2.27 [Yal, page 89]
(i) [y vF, Y"]:—y\([,.F+(VY)F)+7[X>”F.
(ii) UF, Y"]=~y(&, F +(VY)F - F(VY))

forany X, ¥ € Sy(M), F eI|(M).

Proof: From Proposition 2.6 and the properties on page 25, we have
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[y F Y")=ly  F, Y< = p(VD)]
=y« F. Y 1=y x F, y (VD)
=<1 &, F) =y yF—7 y(VY)F)
=7+ (&LF)+(V)F) =y, F,

[F, Y= [/F. Y —y(VD)]
=[F. Y )=[F, y (VD)
=7 F)+y(VN)F - F(VY))
=-y(& F+(VV)F - F(VY)),

this yields the result. m

Proposition 2.28 [Yal, page 90]

O XY= -0 =7, 0",

G (XY =1X 1" - (L),

(i) (X", ¥")=[X, Y]" -yR(X, Y)

for  any X, YeS(M),  where (LyNZ is  defined to  be
(Ly\V)Z = (l‘\.‘})(l’, Z)=(£,V)Z,Y) and R is the curvature tensor of the affine
connection V.

Proof: We have

(X", Y"=[X", YO —y(VD)
=[X", Y I-[X", (VD)
=[x 1) (v, 0,
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[X, " 1=[X, Y 1-[X, y(VD)]
=[X, Y] - (&, (VD)
=[X, Y] = (VL 1) - 7 (£, V)Y)
=[X, YI° = y(V(X, YD - (£, V)Y)
=[X, 1" - y(Ly D).

Also, we have X" =(V )", ¥ =(V,) . It now follows from Proposition 2.20 that
x v)

X" Y =109 0% (9,0
=V =RX, 1)
=X, )" (X, V).

Proposition 2.29 [Yal, page 91
FUx" =(FX)", F X" = (FX)" +(V,F)x"
forany X e Sy (M), F e3|(M).

Proof: Let F', X’ be local components of F and X respectively.

(0 0 (F" 0
ThmF':(l’,' OJ'F({(JF," F’J.Thus

F'x" = ZF:"X'a»
hi=t

=(Fx)",

FX" = FO (X -pvX)
=FX - F'(VX)
=(FX) - F(WX),

since (FX)" = (FX)" = V(FX), then

70



FCX" =(FX)" + W(FX) - FC(VX).
From

FO VX)) = Y y'[a,x* + Zr;x‘)n‘ai ,and

k=t =1
(XY= Y yf(ﬁ;(i-';x‘n Zr;,r;x”)é, R
k=t i=l
V,F = y(VF)

=7 2(V,F)3, ®dx' ® dx*

k=t

= D(V,F)y'6; ®ar*,

k=1

we have

(V,F)X" = 3V, FH5' X3,

k=1
= 2 (OF + Y (T4F ~TEE )y X'3,
ko=l J=t

= y(VEX) - FC(yVX).

Thus FOX" = (FXx)" +(V,F)X".m

Proposition 2.30 [Yal, page 91

i o"(X")=(ex),

(i) @(X")=(aX)" - y(@o (VX))
forany X € Sy(M), w e SV(M).

Proof: 0" (X")= 0" (X)-a"(V, X) = (aX)"
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o (X") =0 (X)-0(V,X)
=(@X)" - y(wo(VX)).

2.17  Horizontal lifts of 1-forms

Let @ be a I-form in an affine manifold M with the afffine connection V. The
horizontal lift of @, denoted by @”, is defined by " =w® -V,o in TM, where
V,o=y(Vo).

Let @, and F,’; be the local components of @ and V in M respectively. We already

know that @ has components “:(éw, , »,). For X, ¥ e 3)(M), where X', ¥', w,
are local components of X, ¥, @ respectively:
(V@)Y =V (o)) - o(V 1)

= Zx o(@,Y") - Zw,(xay" +Zx Y'r))

ih=l ih=l

-Z(X G ,)Y’ —th 'Y’y

it h=

= Z(aw —Zw I))(dx' ®dx’)(X, )

ig=t

with (Vo)(X,Y) = (V @)Y, we have

Z(aw, Zm )dx' ®dx’).

ij=1

We write Voo = Z(Vm )dx' ®dx’, where V00, = 3,0 —Zw I) . Then

[Vl
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No=3 5 (Ce,-) o,))d
h=1

igj=

=27 (Vw,)dt’.

ig=

Thus

. .
0" = Y o,Nyd +Y 0d’ or
hig= =

o": Yo, 0)
=
with respect to the induced coordinates in 7M.
A I-form @ in TM is called horizontal if it satisfies &(X")=0 for any
X €S,(M).If (&,, @,;) are the components of @ with respect to the induced coordinates

and X" are local components of X, then
X"y =Y (@, X -Y@;IlX)=0
=1 h=1

forany X 7, (M). As a result, we have
@, -y @I =0. *)

Thus @ is a horizontal 1-form in TM if and only if (*) holds.
From the components of the horizontal lift " of @ e IV (M), we can conclude

that " is horizontal. Furthermore, we have [Yal, page 93]
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o"(X")= Z":a),X‘
i=1
=(@X)",

»"(X)= Zr"m,x +Zw &X'

=

S Zn),, (Zr X' +8,X")

= th;—z'v,x"

ha=l

=0y (VX),
o"(X")= Y (Mo, X' -T' X' a,)
h.y=1

=0.
Proposition 2.31 [Yal, page 93]

@"(yF) = y(@o F) forany @ € 3 (M), F e3|(M).

Proof: Let w,, F/ be the local components of @ and F respectively. Then
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rFZ ,

e

»" (yF) = Zr;y'm

=t

woF =7 Flod ,

el

y(woF)= ZF,’P’m, .

IvE]

Thus " (yF) = y(wo F).m

2.18 Horizontal lifts of tensor fields
For any tensor field S in an affine manifold M, S e I} (M) , we let

s=3s" ’}.y® ®%®dx"® - ®ah.

Then the action of the affine connection on § will send Sto VS € J;,,(M),

VS =TV @ e 82 0d 0dct ® - @at,
where
V.S; = 2 /' ZZS' gty +ZZS’ YA
=1 i=t rel j=1
and  V,5=y(V8)=Y 5 (VS ‘l)»—@ ®%®ﬁ"® e @dEh .

The horizontal lift " of S is defined to be S” =S —y(VS). Thus §" = §* if
and only if VS =0 if and only if S is parallel with respect to the connection V. Since the

metric g is parallel with respect to the Riemannian connection V, we have g” = g©.
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For any tensor fields P, QeJ(M), if we write P®Q=S. where

Spho= PO PeS(M), Qe (M), then

[

V,(PR®Q)=V(PR®Q)

i Ol a a a
ROX A ) O OO ® O
®dx’ ®dx" ® - " @dF" ® - ®dx))
5 Iy e a l a
=th(V,,(l’ o - ) ® - ®%®@,’ ® - ®W—
®d @ - Rt @dt ® -+ @dx!

_ b o+ ot o e\ @ é
=Zy"((V,P,’ Iq|)Q’ PR A },f;,))y® 8%

®i® ®i,®df" ® - ®dF™ Qdt" ® - Rdi)h

é;’n (3;.

v (al (9 o g1
=27, P ,,.)7® ®F®df’ ® - ®dr’
®y0 4 2o ®%®df"® o ®@dih
2 7 Jaur

+y P ,‘,@, ®%®df ® - ®dr

_ iy O a 3 \
®th(vh I /.);® ®5®dfl ® - Qdx’

=(V,P®Q" + P ' ®(V,0).

Thus
(PR®Q)" =(PRQ) -V (P®Q)
=P ®Q + P ®Q —(V,P)®Q" - P ®(V,0) *
=(P -V, P)®Q" + P ' ®(Q°-V,0)
=P'®Q"+P' ®0".
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We consider the horizontal lifts of some tensor fields. Let F eJ|(M),
Ge3N(M), He3(M) and E' G, H" be the local components of F, G, H

i

respectively. Then

B 0
Hl n
" Ear ey v
=1

G":[Z(r/’Gn -I/G,) Gﬂ]

=
G 0

,.
0 H"
H": s ’ !
1H" Y (-T/H"-T/H")|"
=1

Let SeIY(M), TeJ(M) and S, ,, T', be the local components of S and T

respectively. Recall that

VS =08, = 2 S s
1=1 i=1
WS = Zy’(v,s,' )" ® o ®dx"
=2 TGS, =2 s Th)AE ® o @i

==t

and

:
SC=3U®, A" ® e ®AEN 4 Y S, T ® - B Ry BT ® - ®dFh).
=1

Therefore
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=X 2T Ti " ® - @
=

ooy

4TS, B e BdE B B ® - D"
1=l

If we write S"=Z§a‘ 2@X" @ - @dx™, where a,,..,a, vary from

= ZJ_”S:_...I,,,", 1ody rl:‘, and sf,_.;,‘,l,:,,, = sl,..j. .

=

MUSEIUEED W R ATy Z, AT
= 1
T W = ST ,,)—d‘ ®d' @' ® - ",

i=1

S5
SRR LIS Y S feate - e
and

Z(Jf,‘, ' ®dr" ® . ®deh +T,"’J§®df"® o @t
¥ ,Wih&if'- ® - ®dF Ody Od" ® - Bk"),
Therefore

DRGNS ;.Mf‘@ - @t

T, ¥ L @ ® - ®de

C ®dX" @dy' @dx' @ - Rdx".
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59 ooe

If we write 7" =37/ m%@tﬁ’“ ® - ®dx™ , where §, @

I, ..., n. T, ..., 7, then the only non zero components of T" are

CAPED N CA D 3 N YA

i= =

Propositon 2.32 [Yal, page 96

Forany X, Y e 3y(M), F e3|(M),
(V,F)X" =

(V,F)X =(V,F)X" = y((VF)X)
= W(FX)-F(V,X)=V (FX)- F"(V,X),
where (VF)X)Y =(V,F)X.
Proof: Let F", X', Y* be the local cc

of F, X, Y respectively. Then

P

1z
v X' "VF ——®d” X =
(V,F) ,hz,,(” >@ )f‘_j‘ >

=0,

V X" = 3 V,F")— ®dx' )(/._ ,;p(/_
(V,F) ,.th;.( V'( )@, )Z( + @,)

%

Y~ hy O /i -y
(V,F)X ,,:Z‘ V'(V,F, )@ ®df)2(x ey +§r,x W‘)
é
=Y J(VEhX =
PR
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Since

PN =1 (VS X )

(3, x »—@dx')

hag=t

(V(F' X"y =
-3 7 é;

hioj=1

and
FOV,X)= F“(i(V,X’)y/ é)

(N9, x5 2
-3 y@

hig=

F'"(V,X)= F”(Z(V,X‘)y‘ E)

=

: 2
= 2 (FNV, X5 —
2 X0

=Fv,x),

then

WFX) = FC(V, X) = Z (G,(F' X' )+ZF'X’["' -F'3,X' - ZF X'y —

LYNE} y'
= Z X', F"+Z(F r —l‘/‘,F,"))ﬁ’—h
hij=1 d;
_, @
“Z‘x (0,F - Zr,,F” Z(-E‘r;,))y/y
J=! 1
K
V,F"X'y’
h;'( XV o

Since
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(VF)X)Y=(V,F)X ,

,Px=Y (V]E‘)X’Y’ﬁ,

haj=t
2 l
(VhX = (V/F,")X'?®dx'.

hij=

therefore

KR =Y y'(V,thf% .

hig=1

The result is proved. m

Proposition 2.33 [Yal page 96

(i) F'X" =(FX)",

()  F"X=(FX)"+F"(V,X)
=(FX)" +F° (v, X),

(i)  F"X" =(Fx)"

forany X e Sy(M), F e3|(M).

Proof:

F'X" =(F -V, F)X"
=FX" =(Fx)",
F'XC=(F -V, F)X*
=(FX)“ (v, F)X°©
=(FX)" -V, (FX)+ F"(V, X)
=(FX)" + F"(V,X)
=(FX)" +FS(V,X),
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F'X" =(F -V, F)x"
=(FX)" -V, (FX)
=(Fx)".

Proposition 2.34 [Yal, page 97]

(i) G"(x",Y"y=0,

(i)  G"(X",r)=G"(x",r")=(GxX, V)",

(i)  G"(x".v"y=6"(x",r")=(G(x, )",

(iv)  G"(X,¥")=y(G(VX, 1)),

V) G"(X",Y)=y(G(X, VD)),

i)  G"(x". y"y=G(x,n",

(i) G"(X, Y)=(G(X, V)" =(V,G)(X, ¥©)

forany X, Y e Sy(M), G € I}(M), where G(VX, ¥), G(X, VY) are 1-form such that
(G(VX, ¥)Z=G(V,X,Y) and (G(X, VY)Z =G(X,V,Y) for arbitrary element Z of
I (M).

Proof: Let X', Y/, G, be the local components of X, ¥, G in M respectively. Then

Xl
(0 ! "
X' {X’) s Xr:(;\”) s X”:[Zr;/‘,/] and
=

G,,:[;(r,'c,, +1/G,) G, ,
G 0

it
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where I') Zr',)’ - From
(G(X, )" ~ZG X'y,

G"(X" ¥ [ Y [G, +T/G, e @' + 3G, (dx’ @'+ ®‘ﬁ'))
Ja=t

=t
Vil l
X —= .y W )
(.,v FA =
=0,

'(r G, +T! G, )& ®di' +ZGI’(‘R/® +dy’ ®dx' )]

Ji=1

M-

it

G"(Xx", Y= (
2 a °
02 S 2 2))
( X ‘Z-; Y Fa — 4t ¥ 3
=36,x7
Ji=t

=(G(X, 1),

M= <

G"(x¢, y")=( Y(TIG, +T/G,)de’ ® ¥’ + 3G, (dF’ ®dy' +dy’ ®"f"]

el Ji=t
[Z("’” o v '7] sy ]
h=1 &' k=t
=ZG,,X‘Y’
ji=t
= (G, 1),
G"(x",y”>=[,,z,.,‘rc,,+rG,,)dr/®a?'+l,z_:|6ﬂ<df’® ta j®'ﬁ/)]
(B (&g 2))
et ¥ 1 =1

=36, x'¥ = Gx. vy

Jam
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G"(x", r") =( D()G, +T/G,)dE’ ®dx' + >.G,(d¥’ ®dy' +dy’ ®df’)]

(é(x“——z:r,x' 5] ZEY‘ a)

=36, XY =G Y,

a=t

therefore G" (X", ¥")=G" (X", ¥") = (G(X, 1))’ .

G"(x, r")= ( (G, +T/G,)de’ ®d' + .G, (%’ ®dy' +dy’ ®dx' )]

1 =1 Ji=1
2 o J l
Xty " ) (Y‘ -y ]]
[;( & 7 ; X
= DTG, +T/G )XY - ZG X'rjy + ZG,,((Z\”)Y'
ia=t =1
= ZI‘,’G,,X/Y‘+ZG],(0‘X’)Y’
ija=l Ji=1
Z y [Zr,,G,,X'Y +Gl,(&, )}"]
id=l =1
‘”(I
y'G, Y( rx +—)
- Zror(Grn G
=35 XG LY
=1

Since (G(VX, Y))Z=G(V,X,Y),so0
(G(VX, )Z= Y G,Z'(V, XY,
tj =1
GVX, 1) = 36,7, X Vd'
L=

JGVX, 1) = 325G, (VXY ,

1jae

=G"(x°, Y.

84



Similarly, )G(X, VY)=G" (X", ¥).

G"(x", Y")=[ (TG, +T/G,)dt’ ®dx' + .G, (%’ ®dy' +dy’ ®d)?’))

5 e ) el o e
[E(" FEaP IR ;ﬁ)-é("?‘? ’7]]

= 2(NG, +I/G )XY - Y (I/X'Y'G, +X'TY'G,)

ija=t igd=1

= DG, +T/G )XY = Y (T/X'Y'G, + X'rr'G,)
INEEL) (NIE
=0=(G(X, )",
also

G"(X, Y)=(G (X, Y)~(V,G)XC, ¥)
=(G(X. V) =(V,GYX, ¥°).

Proposition 2.35 [Yal, page 97

Let § €3)(M) or 3\ (M), X,, ..., X, €3} (M). Then
M S X =S, LX)
() S ) =S X)) RS X,
Gii) "X, ..., x")=0,
) S" XX XL X =S, L X))
W ST X =S, L X))

forany t=1, ...,n.
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Proof: We only prove for the case §e3,(M). We know that if S} , are local

components of S and if we denote S,‘ s, and 5,‘_ 5, as local components of S and "

respectively, then
Se =St Sk, =«$," 0 SE i =St s
’ 5" = ( S, 'rh +ZS, Trodicy. J|r,)‘ 'ij,:,,.i,.-,,,..,, =S,’.' i
all the others being zero,and
=ys ,‘—®d" ® - @dx".
F"

Let X/ be the local components of X, in M. Then

X, Z[x";+2r X’(;)

i 1=

(i)

HrFtrn L)

iy=l
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(i)

SUX L XY= YIS X X —;, B X xn L
¥

—ZZS Xl (-TE XX e xh O

oridyy +1 A )X 1 F 5

. . "
(SCX, L, X)) =288, X X ——Zr, o X --AX.'y.

v,sx,", ..., X|")=[Zi’(V,s,7 DL ed® ®df")

F
[llzﬂ(x'&—,-Zr x'{;) . 'Z.;(x"(i Zr"x';))
=278 )X -~~X."§

therefore (S(X,, ..., X\)" +V S(X,", ..., x,")=5x,", ..., x,").

(iii)
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(iv)

S"ex xS xS XL xT

W °

‘ZS' i X e XXX X|'ET
" a2
SEs et L

=(S(X,, ..., X,)".

)

iy dy

I~ 15
SO K= ST Xt e B D

S, i X0 Xl (= F/'X,’)X,”.:"-""/'%)

a
=Y SE Xl X S S =TS )XY

. e
=St XY o XL X e X 7
=285 X"———Zr s xhxn 2
tyody i,..4y 1 5
=(S(X,, ..., X"
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