CHAPTER 3
NULLITY DISTRIBUTION

ON (TM,g",V*)

3.1 Nullity distributions

The nullity distribution was first defined by Chern and Kuiper in their paper [Ch)
on a Riemannian manifold (M,g). The distribution assigns to each point m e M, the
subspace

N(m)=N, ={X eT, M| R(X,¥)=0, forall ¥ eT, M},

where V is the Riemannian connection with respect to g in M and R is the curvature tensor.
We denote the nullity distribution by N. The dimension of N, is denoted by z(m).

In the same way, the nullity distribution on an affine manifold (M, V), a manifold
with a connection V on M can be considered.

If U is an open set in M, then I'(U,N) denotes the set of all vector fields X such
that X(m) e N,, forany m eU . When U = M , we write [(N) for short.

We say that a nullity distribution N on M is involutive if the presheaf of cross

sections over open sets of M is involutive. Then we have

Theorem 3.1 [Tan, page 324
The nullity distribution N on an affine manifold M is involutive.

Proof: Let U be an open set in M, Y, Ze[(U, N). It is sufficient to show that

R([Y, Z), X) = 0 for arbitrary vector field X defined on U. Since
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Vi(R(Y, Z)) =V, (R(Z, X)) =V,(R(X, 1)) =0,

we have
0=35(V (R(Y, Z))) =SV RYY,Z)+R(V,Y,Z)+ R(Y,V ,2Z)},
where S denotes the cyclic sum. Recall the following Bianchi Second Identity,
S((VyRXY, Z)+ R(T(X, Y), 2))=0.

Therefore, when we substitute for (V  R)(Y, Z), we have

0=S(-R(T(X, Y), Z)+ R(V Y, Z) + R(Y, V,2)).
By actually carrying out the cyclic sum, and noting that ¥, Z e I'(U, N), we obtain

0=R(-T(Y, Z)+V,Z-V,¥, X).

Since T(Y,Z2)=V,Z-V,Y- [V, Z], we find that R([Y, Z], X)=0. This proves the

theorem. m

The curvature tensor can also be considered as a bundle map
R :TM — Hom(TM, EndTM) . The nullity distribution N of (M,V) can now be defined

as the kernel of the map R, namely N = ker R.
Since R is a bundle map, the dimension at each fibre is always upper

semicontinuous. Thus the function z(m) is upper semicontinuous. Hence the set ¥ where

(m) assumes its minimum value is open in M.
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The distribution N is nonsingular only on the set V. In general N is singular. The
index 4 will not take the value n-1 at any point, where  is the dimension of M. If so. then
there exists linearly independent X, ..., X, , in T, M such that {X,, ey X,,,,} form a
basis in N,. Choose X, such that {X,. e X X,,} form a basis in 7, M. Since

R(X,,X,)=0foralli=1, ..., n—1,s0 R(X,,~)= 0 implies that z(m)=n.

Corollary 3.2 [Tan, page 325]
If p2(m) is locally constant on an open submanifold M’ of M, then N is integrable

on M'.

Since the affine connection V on M may not induce connections on the leaves, we

cannot say that the leaves of N are flat.

Proposition 3.3 [Tan, page 325

Let f:M — M be an affine transformation [Ko, page 226] of the affine manifold
(M, V). Then u(m)= u(f(m)).
Proof: Since fis a transformation, for every X e ¥(M), X is f-related to £..X. Also, since
[ is an affine transformation f.R(X, Y)Z = R(f.X, f.Y)f.Z for any X, Y, Z e}(M),

the result follows immediately because /- is an isomorphism.
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From now on we assume that the nullity distribution N of an affine manifold

(M, V) is nonsingular.

Proposition 3.4 [Tan, page 326

Let M be an affine manifold with curvature tensor parallel with respect to N. Then

VY eT(N)forall X, ¥ e (N).

Proof: We need to show that R(V Y, Z) =0 forall Z € ¥(M). Since V4R =0, then
(VRYY, Z) =V ((R(Y, Z)) - R(V ¥, Z) - R(Y, V yZ) =0

implies that R(V ¥, Z) = 0 since R is parallel with respect to N by our assumption. m

Note that in a Riemannian manifold, the curvature tensor of its canonical

connection is already parallel with respect to its nullity distribution M.

Let M' be a submanifold of M. We know that in a Riemannian manifold, V will
induce a connection on M' but this may not be true for an affine manifold. However, if M’
is an autoparallel submanifold of the affine manifold (M, V), that is, for each X e ™,
and every curve yin M’ with y(0) = m, the parallel displacement of .X along y with respect

to the affine connection of M, yields a vector tangent to M’, then the affine connection on

M induces a connection on M’ in a natural manner.
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Proposition 3.5 [Ko, volume II, page 55

Let M’ be a submanifold of the affine manifold (M,V). Then M’ is an
autoparallel submanifold if and only if V¥ is tangent to M’ for all X, ¥ e}¥(M').

When M’ is an autoparallel submanifold, V induces a connection on M’ in a natural

manner.

Proposition 3.6 [Tan, page 326]

If the curvature tensor is parallel with respect to V, then every leaf of N is
autoparallel.
Proof: Let L be an integral submanifold of N. We need to show that V.Y is tangent to L

for X, Y € I'(L). This follows from Proposition 3.4. m

3.2 Characterization of nullity distributions

We have the following simple ization of a nullity distribution which we

will need in the sections to follow.

Proposition 3.7

X eT(N)if and only if 3" X*R," =0 for all hi,j=1,2,.. n where R,
k=1

Wi o

X*are local components of X and R respectively.
Proof: If X e[(N), then R(X,Y)Z =0 forall ¥, Z e ¥(M). Let us express X, ¥ and Z

in terms of local coordinates,
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i ] 0
X= ZX ,.y ;yd,.z Z‘:Z&w

where X', V', Z' eC”(M). Take RM" as components of the curvature tensor R with

respect to the coordinate (x', ..., x"), namely R(;‘ s ;ﬁf) ZRM — - Then

R(X,NZ= Z Xxtv'z' Ry, ; =0 forall ¥/, Z' eC”(M).

i.kh=1

Thus we have ZX”RAI,"d(i_O which implies that ZX R," =0 for all

hk=1

h,i,j=1, ..., n. Therefore, X is in [(N) if and only if S X*R," =0 forall h,i,j.m
k=1

3.3 Nullity distribution on (TM,g°,V°)

We already know that for a Riemannian manifold (M,g,V), where R and T are the
curvature and torsion tensors with respect to V, the tangent bundle TM with metric g*,
being the complete lift of g to TM, will form a pseudo-Riemannian manifold and the
connection induced by g, will be V¢ while the curvature and torsion tensors will be R¢
and T respectively (see section 2.15). Let us consider the nullity distribution of the
manifold (TM,g,V°).

Recall that for the tangent bundle of (M,g,V), the curvature tensor RS of V has
components EMD, A,B,C,D=1,...,n 1, .., 7, which can be expressed in terms of

components of the curvature tensor R with respect to V,
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'3 o, _, OR,
B oh_ hop R ho_ 5l ki
Ry' =Ry Ry =aR," =35

Eizkhkrj,:R‘"hv-R;i:Rh *)

kit ki > Tkji
all the others being zero,

with  respect to the induced . coordinates (&', .. x%. 5, .., % or

(&', 2P L) in TM.

}=Z,\_"i=2[/\" X" ih) isin (N, where N is the nullity
A &' h= ¥

distribution in TM with respect to the curvature tensor R of V, then from Proposition

3.7, we have

ZITW",Y‘ =0 forany A4, B, D. (**)
<

From (*), the above equations (**) reduce to the following two cases:

(i) D=h, B=j, A=i,we have
» hyc h Gk
ZR(‘N X¢ = Ru X' =0, ()
=
(i) D=h,B=j,A=i,wehave Y R,, " X< =0; which implies that
[4
Y&, X 4R, X =0,
k=1
and from (*), we have

YR, X +R," X =0. (1
k=1
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So the vector field X in TMis in I'(N) if and only if its components {7"} satisfy

ZR,,I,")?‘ =0
, " hobj=1, o n. (%)
SR, X + R, X )=0
k=1
Now we consider the vertical and complete lifts of vector fields in I'(N). If
z o i . S L
X=2.X Y is in I'(N), then we know that the X'’s satisfy ZR‘/, X" =0, for all
=1 k=1

hoij=1,..,n.

. (Xt 0
The vertical lift of X will be X' = { = =y x* i Its components
x* X* F*
satisfy

ZR‘,, Xt =0 and

(R, X' +R,X)=Y R, X*
k=1 k=1

=0

since X* =0 for k=1, ..., n and Proposition 3.7. Hence X" el'(N).

The complete lift of X el(N) = ¥(M) will be

>
S
—
1
NaillioZ
n

k »
[;\”) = Z(){‘ %4‘ &t %). Its components satisfy

YRS X =Y R, Xt =0 and
k=1 k=1
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YR T R, T =Y (R, A v aw,, X
k=1 k=1
=Y AR, x*
k=1
=4y R,,,"X‘]
k=1
=0

forall i, i, j=1....,n.Hence X“isin I'(N).

Proposition 3.8

Forany X eI'(N), we have X", X¢ el'(N).

Let 7 be the projection from TM onto M. The differential of 7, 7. will map the
tangent bundle of 7(7M) to TM, z.: T(TM) — TM . If ¥ is in T(TM) at (p, X) . then
7.¥ will be a tangent at p with (n.Y)f =Y(f on) forall feC™(M).

The nullity distribution N of 7M is a subspace of the tangent bundle of 7M. we
would like to see the effect of 7z, over N .

Consider the nullity subspace N(p,X) for (p,X)eTM. For any

F(p,X) e N(p,X), we have

- = é
g - “ 2 (A
(p, X) EA Y (p,X)(;x_,(n, X),

T 20 = 37 (0 X) 2 (),
=] A

forall h, i,j=1




From (*) we have ZR,,I,"V'(p,X)=0 and Y (R,"V* +R,'T*)(p.X)=0.
k=1 k=1
_ LI ’ :
Then .Y (p,X)= ZY (p,X);(p) whose  components  clearly  satisfy
=1

DR, "T*(p.X) =0, forall h, i,j=1, ..., n, which implies that z.¥(p,X) isin N(p).
k=1 .

This is true for all ¥(p,X) in N(p, X). Therefore, 7.N(p, X) < N(p). Hence we have
7.: N - N . Moreover from Proposition 3.8 7.: N —> N is an onto map. This proves the

following:

Proposition 3.9

N(p)=r.(N(p,X)).

3.4 The dimension of the nullity distribution on (TM,g°,V°)
Suppose that the dimension of the nullity distribution N of M is d. Let {e, }74 be a

local basis of I'(N). We already know that ] and e are in [(N) forall i=1,...,d.

"

Let ¢, = Ze,,ﬂ/ . Since the dimension of N is d, the rank of the matrix (e,) is also d. The
I=1
. "

set {e,' } , is linearly independent since e/ =) e,d; and it has the same matrix (c, ).
= b

d
Consider )" (y,e/ +f,e) = 0. Then
i=1
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n d n

(r.e,0,+B.%,0; + e,0,)= 3. (7., + B,%,); + P,e,3,)
1

s= i=t =

=0.

iMe

d n d
Thus ZZp,g,,a, = Zﬂ,el =0 implies that B, =0 and
=

==

d_ n d

ZZ((y,e,, +p,,)0;) = Ziy,qjﬁ; = iy.e," =0 implies that y, = 0 since {e,"}:iI
J=1 i=t

1=l =1 i=l =
is linearly independent. Hence we know that {e," s e,r} is linearly independent. This shows

that the dimension of N is greater or equal to 2d.

We would like to show that under the assumption that both N and N are regular,
the dimension of N is actually 2d, where d is the dimension of N, i.e, at each point
=! on =l

&X', Ly, N is a 2d dimensional subspace of

[CIFRRE S R ]
e (TM).

For any X eI(U,N), let X®, R,.," be the local components of X and R®

respectively with respect to the induced coordinates. Then from Proposition 3.7, we have
> Raep'X" =0 forany4,C,D. 1)
B

We already know that
RS2 5 L) =R E L EY,

. "R _
Y- R =R =R =R, foralli, joh k=1, .0

i
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all the others being zero, where R.ﬂ" are local components of R.
From (***) on page 96, we have
i R, X" =0,
";' forall i, j,h=1, ..., n. )
YR, X + RS X =0,
T k=l
The second equation of (2) can be further reduced:
0= z":(kk,,“,?‘ + R, X"
=
= Z":(R.,,”I\‘" -R,"X* + R, X+ R, X"
k=1
= ik,,,”()?‘ -@?‘)«»z":a(/e‘,,*,?‘)
P P

=R (X =K+ Y RS X =Y RN XY,
k=1 k=] k=1

forall h,i, j=1,..., n,since 3" R,"X" =0. Thus we have X (7, N) if and only if
k=1

its components X * satisfy

forall i, j,h=1, ..., n. A3)
Since R,"(X',....,%",7', ..., 7") are functions of (%', ..., ¥") only, we can

show that the dimension of }_V_(i, . is 2d.

E N )

The system (3) at (%', ..., ", 7', ..., 7") will be
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[Z R‘,,”Y‘Jﬁﬂ X 7 =0 a()
.

! foralli, j,h=1, ... n. (4)
[Zn.,." X Z"”’ )](v s BT L) =0, 4Gl

and its solutions will have the form (X*, Y‘)=()7', Vi Z"’ X ) =1,

where {X*}; . (7*}7 | satisfy equation 4(i).
Since the degree of freedom of (X', is equal to the dimension of N('.

)

which is equal to d. we now have to show that the degree of freecdom of

{Y‘ +Z) = } is d.

k=1
From the assumption that N is regular we have
dimﬁ”.» e, .‘~)=dimﬁﬁ..u;.'n. o thus, we only nced to show that
_ ” avt "
Fra Yyt S LEN0, ..0) is of degree d. But
=1 & ret

" Wk "
{(Y' +3 5 -’-%,)(f', L X0, 4“,0)} ={PAE' L T0,..,0) 4 0}, . hence
7 A

k=1
the degree of freedom of {V* (%', ..., %", 0, ... 0)}5., is clearly d since equation 4(ii) at

(%', ..., ¥,0, ..., 0) reduces to ZR,,,"T"]&', W X0, ..., 0)=0.
k=1

We summarize the above result in the following theorem:
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Theorem 3.10

If the nullity distribution N on TM is ingular, then the di ion of N is

twice the dimension of N.

Remarks:-If we assume only that N is regular, N may still be singular. If we consider other

liftings of g to TM, then their corresponding nullity distributions may also be

studied.
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