CHAPTER 4

(TM,g,) AND GEODESICS IN (TM,3,)

4.1 Sasaki metric

Let (M.g) be a Riemannian manifold. The metric g as a (0, 2) tensor on M can be

written as g = Zg,,dx’@dx’ with g, as its tensor components. Let I'" be the

Ja=t

Christoffel symbols formed with 8- In a neighbourhood 77'(U) of TM, where U is an

open set in M, we write " = dp" + ZI‘” /dx" . Then Zg/z‘&’ ®&' will be a (0,2)

jimt Jamt

tensor on M. The Sasaki metric [Sa] is defined by
8= (g8 ®dF +8,5' @F').
Ja=1
Let us look at the components of the Sasaki metric,

(g,«tf’@ﬁ'u,@ ®F')

x
M;

8.

]

[g,f ®dx' + Z r,e,7 y"ﬁf@dfwz W' g% @ dy'

=1 hkpa=t k=1

+Zr,,,y g, ®dx' +g, ’®tif’)

skl

[[g,. 2Ll e.5'y ] ’®w7’+zl'.,y g,d%’ ®dy'
=l hkts=1 sk=1

M=

+Zr,,y g,dy’ ®dx' +g/,d)7’®n'_].

sk=1

Ifwe write I/ = "I 7", then g, in matrix form will be:

h=1

103



g+ 28l Yrg,
=1 z=1

Z I'g 5 gy

k=l

2, =(8n)=

We can see that for any X, ¥ € 3\(M),
(X" "= §.(Z(X"ah =X Ta X", Y (Yo, - Y Ty s, ))
h=1 m=1 h=1 m=1

=3 (e, 4 TN - 3 g, T
=1

ig= ijms=

- e, VTIX"+ Y g IIX Ty

ifms=1 ijms=)

=ig/,X’Y/ s

ij=t

z,(X".Y")=§,[ix"ah ,iymh)
h=1

=

n
g, X',
i

§,<X”,Y">=§,(Z<X”® -2 0X"3,), ZY”ﬁ;)
h=1 m=| h=1

ijm=1

- i‘r;g,,xly' - Xy,
i

thus we have
B Y=g (1) = (ex, D),
g(X"r"=o0.

For an alternative approach to the Sasaki metric, see [Kw] and [Do).
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4.2 Adapted frames

n
In this section, we shall use some notation to simplify our structure: I'! = Z "
=l

. . . & @ &
_ oo ey 1, _ 98 B s _
”,;-;r,zn ~,§r.,y g, . from ’Z!':l‘vg,, =t gk its clear that ~, =~

e

L
+ rre oA
So we can write g, = (g,,) = & ”Zﬂg" A
A

s &ji

Let U be an open set in M with local coordinate (x', ..., x"). Take

v
(%. —;7) as its local basis on 77'(U). Consider (—J -2 and
2
AN - R a\"
5/ = =
(W) =E—Mdrﬂy ET_E—EF, 7 We put D, —(—) and

5\"
D, = (%) . Then the set {D, .D,} is a local basis for 7™'(z7'(U)) < T(TM). We call
(2

this the adapted frame.
If we write
6}1 rh 5‘- rh
A\ _ |9 i a _ A y_ |9 K
(40)=(% ﬂde(A,,) ~(ats)=(% o).
then we will have
o
D, =Y 4,"—,
zu

and if we write the coframe of {D, ,D, } as {0',0'}, where

0" =% A’adx" &, f, A, B=1, .yn, T, .., 7,
B
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we can see clearly that 8 =dx', ' = &',
Since (A,")V‘ = (A‘n), we have dx” = ZA‘,AB" . Therefore
g = ng‘ﬁ‘ ®adx”
AR
= Zgu[z 4, ‘a'] ®(Z ,4,,‘0")
AB 14 P
= 2 8aA 4,0 ®06".
ABy.p
If we let g, be the components of g, with respect to the coframe {67}, that is,

g, =2.8,0 ®0" then we have
rp

2 =0.8.A,"4," forall y and 4.
AB

o
Dh) (6‘ -r"]; ; sty
F =, 6" 0" )=(a" &") " |, weha
rom(DE 0 & @i ( ) ( y) 0 & we have
A
& [67 r)[DJ bR (g ;)(67 —rf]
= (=" @*)=(e" @ ,
% 0o &' \b, (" a)=( 0 &
[z

0 S
& J . Using the same argument, (§"7) = (g 0 ] .

which implies that (g =[
P (gM) 0 g, 0 g

Define Q ;" =Z(DrA,‘ —D,,A,‘)A"g ,where , B, y =1, ...,n, 1, ..., 7.
A
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I

. n i
The only non zero term are Q,," = —Qu" = —Z R,,,"y‘ and Q, = —Q” =1
k=1

h

where R,," are the local components of the curvature tensor with respect to V.
=2(D,4" - D44ty
7]
- i_(zu-r,' )8} - D,(-THs})
Z ( o,k +Z J-i;’(-ﬁ,r‘ Zr” J
=]
Zy ((3 Ty -0+ Zr”,r; —ir:,r,r)
o m=1
- Z ZR,}, =0,
k=
Q, " —Quh = r; can be proved similarly.

Let us evaluate the Lie Bracket [D,,, D,,],

[D., D,,]:[ZA,,”(?,, ZA,,’aC]
8 c
- Z(A””a,,(,q,‘)a{. ~4,°0:(4,")5,)
=2(4,"8,(4,) - 4,°3,(4,)5,
BC
=3(p.4, - D,4,°)oc
c
=Y (D4, - D4, )47 c 4,5,
BCy
r
= Znoﬁ Dr N
14
Now let ¥ be the metric connection in TM with respect to the Sasaki metric g, .

Let g,, be the tensor components of g, with respect to the adapted frame {D,}, F,'; be
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the Christoffel symbols with respect to the adapted frame {D,} and F,.‘, be the Christoffel

symbols with respect to the coordinate vector fields {Fs}. We have
VD=3 15D, =Y. D,4,"0,+ Y. A°4,"(¥,.5,)
a A BC
=D, A, A4°uD, + 3 4,°4,"T40,
Aa N ABC
=D, A" A D+ Y A4, ThHA"D,
Aa ABCa

=D A+ A 4, T4y A",
Aa BC

Thus, we have I';, = Z(D, A,,l + Z A,'.Apnl:cAu)Aa‘
B.C

Since V is a metric connection, that is, ﬁ,g, =0,6=1,..,n 1, .., 7.

¥,2.)D,.0,)=Y,(2,(D,, D,))-&,¥,D,, D,)-2,(D,, ¥,D,)
=D, g(zr D,, Dy)-g,(D,, Y. TsD,)

=D,8, - Z(r&rgw‘rsﬂgn)=0v

we have D,g , = Z(F}, By F,’,E") . Thus we have

Proposition 4.1 [Yal, page 160

= lZ(“"’)(D,g.,, +Dy8, —D,8y) +1(Q,° + Q% + Q%)

where Q") = Zg"‘g,ﬂn,, .
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Proof:
12(E"ND, By + Dy = DZg) + 1@ + Q%0 + Q)
=4Y 8" (D8, + DsR, - D,E,p)+1Q,° +,Z(§"‘§m +2878,Q,")
=T - T + U5 80— Th8, T8, +T08,)E™
X3
%[ - +Zg 8T, —“,;)+Z§""§,,(r - ,,)]

= g[r;;, T + ) T8, 8" + ZF,;,g,,g"”)
0 €0

2" (D8, +DE, - D,g,)+1(Q," +Q" + Q"))
(8"0,8,+8" 38, —z“a.g,/)ﬁZ(g“’g‘, S B 80,
V@08, + 308 B A,

=%Z(g O,8,+8" 0,8, -8"d8,)
ko
h
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F =1>8"(D,g, + D&, -D.Z,)

+Q,'+ Y (2720, +§"§,;n.‘)]

§ 28" Ry'e, 5"

stk=t
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With the same argument, we will have

F =T, I':, =_%ZRA/’"7. =%2Rkuh7‘! F,”,=-% R'wy' =4 Rmy » G
k=1 k=1

l_zzkmy , r:;-:r:;. Fz=0, F;:O,

4.3 Geodesics in (TM,g,)

Foracurve y : I - M, y :1 - y(1), we define along y the notion % by

=h



= f{d/T ‘jf v, X Z(VMX ) ZT;T for fa function in M, X a vector

i

field in M, where X can be written locally as X = Z X' — d(’ .

h
Wehaveijrzvd,\’"__.;z "de'

& L=l

Let y : 1 — TM be a curve in TM defined by
O =WV =G0, oy y" (1), V'(0), ..y V(1)

Obviously for a parallel vector field ¥ (r) along y(r), where Vy='(@), ..., v"(1)),

M—0 forall h=1, ..., n. Now we write

FO=G' WO, oy (0, VO, oy V(1)
=G, e O T, ()
=(7').

If ¥ : 1 TM is a geodesic in TM with respect to the Sasaki metric Z,, then

a

m/(l) =0, which implies that de‘:d; F7 0, thus
Z(d’f‘ F s’L_i")_i_o
dr’ "“drode ) xt T

hence

2=-4 =B
dr_ +ZF"deL,_0 forall A=1,...,n 1,.., 7,
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It will be much more convenient to consider the geodesic equation with respect to

the adapted frame {D,, D} .

We write
6 _ »d}' _dy"
dt z,: dr
o podr”
z Al S
dt ; "
h
2
Z ;.di’ 3
Jd=1 g
di‘ wdy'
=——4+ ) =y’
di ,Z, "a”
_i
dt
5’/"
Tdr
o dy* a7 .0
Now, from — =Y A" =) 4, — d
ow " dt ZA: ar dt 24 dt an

T = 2D, A" + Y T84, 4,") A4, where T and [ are the Christoffel symbols of
1 BC

¥ with respect to the coordinate vector fields and adapted forms {6”}, respectively, we

have T, = 3" (T4, =D, A4,y A s A" .

yhoa

Thus from

+Z_‘ dy —=0,wehave
I dt

Fa g4 _ ] na_"_
dl(ZA" d’) ”gﬂ(;rﬂn D,4, )A ad’c (ZA T4 )_0,

rr it dt
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£ ) glenec-nndzs-
i\ et w\e dt dr
If A=h,then
0’ o
= 4" -D ")__=
dt[z A )+,Z(Z A )
d(e =, 0" 0
(o)t o
dat\dt) 47 dt dt
If A=/ ,then
d ;0”] ( Sa gk ;)a”o*
—| ) Ay — |+ IpA4,” -D, A, |——=0. ok
d’[zp:ﬁdl 2\LTA DA G 9
Since
i 0" 0 S 6 0
LA D, (-T"—"-
20,4, dr dt z,:,,. ) ( ‘)dr dt
n " " go oo
=>4, - r’a.](- rh ')—— ( ]
.Z.(‘,z" ,ZH ddz XU
SIRS o' o 0'9
- Il-/rh /arh) rh
IJZ-I(/; Z}’ dr dt ,Z u d d

(**) becomes

d=IN =1

]
n n i ok n ik
S(Ermin-van)ro. snol
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sl Brs)e-Sm ) al@) o G 2imn e
,;'[’éy'rl.l 5 éjﬂa,r;)%% + ;r" 31 Z: .
(4(%) *‘éffﬂ%i—fj-ﬂi.fﬁ[%(%)+,,,, o)
N s S PR L+
+’§:|y'a,r; “J'IJ',gr:' %(‘Z ’;r,‘m d; ] =0.
From (*) and 07: = %, equation (***) can be reduced to —-— ﬂ‘ ~:ﬂ i{ 3,;

Hence a curve 7 in TM is a geodesic if with respect to the adapted forms {0}, we

=, 00" _
,,z,: 7dl di

have ——

Then we have for a = h,

i(ir_i)+ rn 000" _
di\dr ) 4" dr dt
d dy) W00 &, 00 N
—| = —_——+7 —_—— R,
dr[ dt) S ded AT ddr ’,.jzh, Y
LTCATS ITL AU R et s
a\di ) G4 da a5 dr dt
5 dy) do o OV dy
v/ Y R, —_——t
m( dt ,z.:. w T
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Fora=h,

. T
but Y R‘,,”y‘ddeL= 3 (a/r,:-a,r” +Zrm - Zr/mr,:J-‘ drldy' _,
e todr T dt dt

therefore the equations for a geodesic

PO =@V = (O, ooy 7@, V' (1), ..o, V(1)) in (TM,E,) are

v OV dy'
+ =0,
@ ,; o di

(b) —5-=0
forall h=1, ..., n

. . L
If we put  as arc length in TM, then we have g, (3(1), ¥(1)) = ngr i—'i—‘ =1 or
Py

. . dy’ dy' 5V’ JV'
in full (g ——t gy —
,; dt de %M de dr

n_ ph n ph
Since V' is a metric connection, (2, )(Zj—t D, , Zi—l D,.'] =0. Hence
h=1 h=1
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s [ [n 0 " h
= k3 =D, Y2 D
ol Bl O
(0 "d o
w570 547,
m dt e dt i
N " gh " g
=V 12|Y%>D, .3 % b
Ho & e M dr Dh])
(e n (d o n
28|y % p v 4
& [h_. =\ de dr ,Z
n_ph i
= (. L}
=V lal>%p . Y% p
”"(g (; S ”)

17

)
(5)+ £

=, ||-8|9. >%p
- h r(”hzul: l{l h

o
;I



Since

s < v sv! - -
a =0 thus E[Z:‘g" 7 ) 0. Therefore

d‘ S
Z 8i @ ar =conslant,
i dt

s being the arc length in M so that s and ¢ are related linearly and may conveniently be
taken to be identical. Thus the arc length for a geodesic in 7M is lincarly related with the

arc length parameter of its projection on M.

4.4 Geodesics on a fibre

Take a curve on a fibre, that is, y" =constant for A=1, ..., n. Then (b) on page

116 can be reduced to

2 n i i 2k 20
:$V_~d(m/)+ prdy SV _dv d(z[,,dy V’J:iL:n.

a’ " a\d ) A A AT Al dr dr’

ig=

h=1, ..., n, these imply that V" =a"t +b", a", b" are constants. Thus a curve on a

fibre s a  geodesic if and only if it is of the form
TO =V =" oy a't+b, L @t +b"), where y", a", b are constants

forh=1,...,n

4.5  Natural and horizontal lifts

Let y(1)=(y'(t), ..., ¥"(1)) be a geodesic in M. The horizontal lift of y(1) will

be:

PO =" =GO, s 7", VO, o V0,
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sVt av* wdy’ Syt
h = r;, V'=0and —5-=0.
M T T ,Z, dt dar?
We note that a proposition in [Yal, proposition 7.2, page 174], stated that the

horizontal lift of a geodesic is a geodesic in TM, the proof was not given. In this thesis we

show that the converse is also true.

Proposition 4.2

The horizontal lift of a curve yin M is a geodesic in (TM,g,) if and only if yis a
geodesic in (M, g).
Proof: Let y : 1 —> M be a curve in (M,g) defined by y(1)=(y'(t), ..., y"(1)). The
horizontal lift of y at a point (p,V), where p=y(0) and V e€T,M, is a unique curve
7 : 1> TM given by

O =GO VEO) =G O, ooy 7" (W), V'O, .., V" (1)),

where 7 projects onto y, the vector field ¥ (t)=(¥'(1), ..., ¥"(t)) has these properties:

V)=V and is parallel along y(f), that is, ViV () =0. Therefore,

2. h n Vi i 2. h 2k

6(;; + ) R,(/'"%%:‘Sm}; =0 an 6dtl: =0 if and only if y" satisfy
iJk=1

62,‘!

i 0, that is, y(¢) is a geodesic in (M,g).m

Consider now the natural lit y* of a curve y in M. Let 7" :/—TM,

YO =GO, s 7O F (O, ooy 77(1)), 7 satisfy
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')

7"
)= @

_ar'm o "
o for y() = ('), ..., " (1)).

It is clear that

Sy & »dy* J(dy )dy' Syt & wdy* 8%’ dy'
—5+ R =—"+ R, ——5——=0
® dr’® ,_,Z‘,,. Yooa di\de ) de T ar? ,.,.Z,,_, YCar dit

5 de") 8'y*
[ I Ay =0.
® dr(dl dt dr’

Thus we have

Proposition 4.3 [Yal, proposition 7.3, page 174]

If yis a geodesic in (M, g) , then y " is a geodesic in (TM,g,).

On the other hand, if a natural lift of a curve is a geodesic in (TM,g,), then, it

satisfies the equations

627" n » d}/. 61,/ dy(
+ R, — =
® dr? ,JZ,_, MOde dt dt

5(6 dy Sy"
b ( ) =0.
® dr\dt dt dr’

— _ n ‘siyh " leh
Thus from (b), we can see that (Viu)g’ )(Z—D- s Z

—D»J =0 which implies
wmoa R A Th P

n 2, ) 2
d,(Zgu oy’ dy J 0, thus %lr— =pY", where p is a constant, Y* the unit vector
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. _— L . dy* . . -
in the direction of the vector dl—}; . If we write X" = % , the unit vector in the direction
of y(1) and if p# 0, then we can write equation (a) on page 120 as follow

e YR XX =0.

k=1

Transvecting this with ", we will have ’

SR, X VXY =1,

i) k=1
hence we can conclude that the Riemannian sectional curvature with respect to the section
determined by the osculating plane of the curve in M is constant. Thus if the natural lift y
of a curve y is a geodesic, then either y is a geodesic or the first curvature of y is a
constant and the Riemannian sectional curvature with respect to the section determined by

the osculating plane of y at any point is a constant [Yal, proposition 7.4, page 175].

4.6 Tangent vector fields of the liftings of the geodesics

Let y : 1> M be a geodesic in (M,g), y(t)=(y'(t), ..., "(1)). We already
know that the natural and horizontal lifts of y are both geodesics in (7M,g,). Now we
consider the tangent to each " and y".

The natural lift is given by

MR I A 0) dr"(i)]_( » dr"(l))
14 (l)—(r 1), ooy y"(1) e e 4 (1) a )

The horizontal lift of yat a point (p,V)is given by
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7'O=¢'O, @V, e V) =0 @)

with y(0) = p, ¥(0)=V, V,,V(t)=0.

70

We already know that V,, ¥(f) = 0, and since y is a geodesic in M, we also have
1 n
Viw? (1) =0, thus >, ..., V"(t)) and (fld—;‘—). ooy %} are two parallel vector

fields along y. It is clear that the natural lift of a geodesic is actually a horizontal lift with

initial properties (0) = p, ¥(0) = 7(0) and V(1) = y() .

" N
The tangent vector fields along y"” and y" denoted by @ and u

dt

respectively, are

dr"(l)_(dr”(!) dV"(r)) [dr [0) hdr (r) J
a Ua a ; and

dr”(r)=(dr'(l) dy"(n d’y' d’r"(l)) (dr (0] dr(t))
dt a7 A a7 ar? dt ar’

The tangent of y(¢) is

1 n h
0y = dr(l) (dr o dy (r))=[dr a)),

a7 dt dt

dr( )

and the horizontal lift of ———= as a vector field along y(r) will be

(dr('))"=(dr'(') dy"m)":[dr"u) By dr’(!),,')
dt a7 art o’ S d ’

Along the curve y" ,we have
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ar0)" a_(dr'@ 5 dy’
oyt = , - rﬂ L y'].
dt dt by=] dt

Along the curve y " | we have

dt N

(dr(!))"eyu =(dr"(t) & dy? dy! J
dt S de odr )’

=0, then

but since yis a geodesi 4y (’) Zl‘",dr dr

dr’ by dt

(#9)" oy (220, 7).

dt dt di’

Thus we have

Proposition 4.4

If y is a geodesic in M, then for any horizontal lift 7" of y we have

H " H N
(d}’(’)] oyl = dy” (1) . In particular (d}’(’)) oy = dy (1)‘
dt dt dt dt
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