Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

CHAPTER 5: IMPLEMENTATION AND TESTING

Chapter 5 discusses the implementation and testing phases that need to be done for the
simulator. During the implementation phase, all the classes with important attributes

will be shown her with the explanation of these attributes as well as methods

&

contained within the classes.

Simulator testing is done in three parts. Component testing will test the resource
classes and module testing focuses on cell switching testing and cell rate testing.

Finally, the test driver is used to test the entire system.

5.1 Implementation

This ATM simulator consists of two main packages: swictchpackage and
simulatorglobal. Followings will describe attributes within classes for these two

packages.

5.1.1 Package: simulatorglobal

7

-global ists of y classes for the general ATM network. Certain

important classes which is useful for this simulator are Queue.java, QueueNode java,

Indicator.java and GlobalClock.java

QueueNode.java and Queue.java

public class QueueNode {

private Object data; // data

private QueueNode next; // pointer to next object
/
public class Queue {

private QueueNode firstQueueNode; //first node in the linked list
private QueueNode lastQueueNode; // last node in the linked list
private int numberOfNodes; // number of nodes

}

78

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

QueueNode and Queue work together to provide the abstract data type of linked list.
Interface methods involved in Queue are inserting and removing QueueNode, also
from any position in Queue, retrieving and updating QueueNode’s information in any
position in Queue. The other two methods are getting Queue size and checking if it is
an empty Queue.

Indicator.java

public class Indicator {
protected int numObjects=0;
protected int numObjectsReady=0;
}

The indicator class maintains two attributes. NumObject indicates number of objects
registered into it and numObjectsReady indicates number of objects that have signalled

to it. Therefore, Initial values for both attributes are 0.

The interface methods of this class allow for registration, signalling of objects and

resetting of the signals for all objects.

GlobalClock.java

public class GlobalClock {
//time atrributes
protected long tick;
protected static float usecsPerTick = 0.01f;
protected long maxTicks = Long. MAX_VALUE;

//control attributes
protected boolean clockStop = true;
protected boolean tickHappens = false;

//object attributes
protected CheckList signalledThisTick = new CheckList();

}

GlobalClock is used to synchronise the activities of all classes across the simulator.

The attribute tick is used as the time unit in GlobalClock. This tick value is related to

79

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

the real world time microsecond by usecsPerTick: how many microseconds for
running one tick. The default value is 0.01 microseconds per tick. The control
attributes determine the clock to proceed to next tick time or stop moving. Finally the
object checklist maintains a list of objects bound to the GlobalClock and therefore

dependant upon it for synchronising.

Interface methods provided in the clock including registration of objects with the
clock, clock signalling for moving to the next tick, clock polling for the permission to
move to the next tick, and clock querying for the conversion of tick so real time

measure and vice versa.

AtmCell.java
public class AtmCell {
protected int VPI; // virtual path indicator
protected int VCI; // virtual channel indicator
protected int CLP; // RESERVED
protected int PT; // RESERVED
//following attributes for RM cells
protected float MCR; // minimum cell rate, set by user
protected float ACR; // RESERVED
protected float ER=0; // RESERVED

protected boolean Cl=false; // RESERVED
protected boolean NI=false; // RESERVED

}

AtmCell is the fundamental object in ATM switching. VPI and VCI values are used to
provide switching: information and MCR is used for controlling cell transfer rate.

Others are reserved.

Interface methods allow the retrieving and updating for the values of VPl VCI, and
MCR.

80

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

5.1.2 Package: switchpackage
switchpackage consists of the necessary classes for ATM switch, i.e
InjectedHeader java, Buffer.java Switch.java, BanyanSwitch.java, and

RoutingTable.java,.

InjectedHeader.java

public class InjectedHeader {
private boolean activity; // TRUE if the corresponding buffer

// cell
private int destination; // output port destination
private int vpi, vci; // both values identify an ATM application

}

InjectedHeader is the object for injected header cell. This object copies some data from
buffer for switching purpose. activity is a boolean type which return true when there is
an ATM cell inside the buffer. destination refers to the output buffer for which the cell
should be switched to. In case that activity is false, destination is set to —1. Lastly, both

vpi and vei work together to identify an ATM application.

Interface methods allow the retrieving of destination, activity, vpi, and vci. The other
two methods insert all these information into injected header as well as clear the

injected header cell.

Buffer.java

public class Buffer {
protected int max_buff size; // user input maximum buffer size in cells
protected int curr_buff size; // buffer size occupied so far in cells
protected int total_cells_lost; // total cells discard in this buffer in cells
protected Queue bufferQueue; // cells contain in this buffer
protected Link connectedLink; // a link at the side of buffer

81

Development of Object Oriented Components for ATM Network Simulation'with Emphasis on Switch Architecture

Buffer contains attributes for the buffer size, current buffer size occupied by ATM
cells, a queue for storing ATM cells, and the connected link. Connected link is only
applied to input and output buffer of the ATM switch.

Interface method, getBufferList returns all of the ATM cells in queue structure, which
allows the insertion, deletion, modification, and retrieving of any ATM cell in the

queue.

Switch.java

public class Switch extends Thread {
protected Indicator indicator;

protected int objectld; // object ID assigned to this
// thread
protected String name=""; // object's name

protected Graphics g; // inherited graphics property
protected GlobalClock clock;

protected float switchingCellCredit = 0;

protected int cellCredit = 0; // number of time that the internal
// switching can be performed

protected int switchSize; // equals to number of ports

protected float switchingRate; // number of cells to be switched
// per tick

protected RoutingTable routingTable; // routing table for this switch

Switch is an inheritance of Thread to allow this Switch to operate concurrently with
other Thread objects in the simulator. General attributes of this class consist of the
object name and object ID. Object ID is assigned by the GlobalClock during
registration. Other attributes are reference to the global clock, indicator, as well as Java
build-in Graphics object. Both switchingCellCredit and cellCredit are initialised with
0. These values are reset to 0 with every completion of one second. Finally, switchSize,
switchingRate, and routingTable store the information for the size of ATM switch,

switching rate (in unit of number of cells per second), and routing table respectively.

82

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

ATM switch maintains two internal methods. It allows the conversion from cells per
second to cells per tick for the use in simulator environment and returns a true value
for the completion of one second. Among the interfaces methods are retrieving ATM

switch size and routing table.

BanyanSwitch.java
public class BanyanSwitch extends Switch {

protected int totalStages; // number of stages in Banyan
// switch

protected Buffer buffer[][]; // number of buffers in this
// switch

protected InjectedHeader inHeader[][]; // contain the information for the
// head-of-line ATM cell

BanyanSwitch is an inheritance of Switch class. Hence, it is not only behaved as ATM
switch but also as a thread. BanyanSwitch makes use of totalStage to store a number of
stages. buffer[][] is a two dimensional arrays for all the buffers contained in this object
and inHeader is a two dimensional injected header cell for the corresponding input
buffers.

When this object is instantiated, both objects Buffer and InjectedHeader are also

instantiated through the BanyanSwitch constructor.

Buffer buff[][] = new Buffer[switchSize][totalStages + 1];
inHeader = new InjectedHeader[switchSize][totalStages];

The number of buffers, i.e. SwitchSize x (TotalStages + 1) but not SwitchSize x
TotalStages has been explained in chapter 4, section 4.2. Due to Java array range for
size N is from 0 to N-1 but not 1 to N, as a result, first buffer in every stage must be
assigned with [0][which stage] and so forth. Same concept is applied to injected header

cell too.

83

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

Five important internal methods are used in BanyanSwitch, ie. switchCell,
getSelectedInlet, banyan2x2, banyan4x4, and banyan8x8. These methods are declared
internally because they need not accessed by other objects. switchCell simply switches
an ATM cell from input buffer to its output buffer if the output buffer is not full.
getSelectedInlet return the inlet that should be selected (or neither one is selected)

when internal blocking occurs. Banyan2x2 performs switching within a switching

1 Both Banyan4x4 and B 8x8 determine the entire routing path within a
Banyan 4x4 and Banyan 8x8 respectively. They will be further explained in the

following sub-sections.

Banyan 4x4 Implementation

The logic for Implementation of Banyan 4x4 is firstly, Perform first stage switching by
inserting information of cell into InjectedHeader, this is followed by perform
switching for stage 1’s first switching element and second element. Secondly, perform
second stage switching by inserting information of cell into InjectedHeader and
followed by perform switching for stage 2’s first switching element and second

element.

// Banyan 4x 4 switching

Private void banyandx4() {
// 1Insert the first cell from each input buffer (stage 1) into injected
// header level 1
setInjectedHeader(0);

// 2.Perform the Ist stage switching
banyan252(getlnjectedHeader(0, 0), getlnjectedHeader(1,0),
getBuffer(0, 0), getBuffer(1, 0), getBuffer(0, 1), getBuffer(2,1),1);

banyan2x2(getInjectedHeader(2, 0), getInjectedHeader(3, 0),
getBuffer(2, 0), getBuffer(3, 0), getBuffer(1, 1), getBuffer(3,1), 1);

setlnjectedHeader(1);

// 4.Perform the 2nd stage switching
banyan2x2(getlnjectedHeader(0, 1), getInjectedHeader(1, 1),

84

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

getBuffer(0, 1), getBuffer(1, 1),getBuffer(0, 2), getBuffer(1,2), 2);

banyan2x2(getlnjectedHeader(2, 1), getInjectedHeader(3, 1),
getBuffer(2, 1), getBuffer(3, 1),getBuffer(2, 2), getBuffer(3,2), 2);

Banyan 8x8 Switching Implementation
The logic for Implementation of Banyan 8x8 is similar to Banyan 4x4 where stage 1

switching perform before stage 2 switching and followed by stage 3 switching.

// Banyan 8x8 ports switching

private void banyan8x8() {
// 1.Insert the first cell from each input buffer (stage 1) into injected
// header level 1
setInjectedHeader(0);

// 2.Perform the Ist stage switching
banyan2x2(getlnjectedHeader(0, 0), getInjectedHeader(1, 0),
getBuffer(0, 0), getBuffer(1, 0), getBuffer(0, 1), getBuffer(4, 1), 1);

banyan2x2(getlnjectedHeader(2, 0), getinjectedHeader(3, 0),
getBuffer(2, 0), getBuffer(3, 0), getBuffer(2, 1), getBuffer(6, 1), 1);

banyan2x2(getinjectedHeader(4, 0), getlnjectedHeader(5, 0),
getBuffer(4, 0), getBuffer(5, 0), getBuffer(1, 1), getBuffer(5, 1), 1);

banyan2x2(getlnjectedHeader(6, 0), getlnjectedHeader(7, 0),
getBuffer(6, 0), getBuffer(7, 0), getBuffer(3, 1), getBuffer(7, 1), 1);

// 3.Insert the first cell from each mput buffer (stage 1) into injected
// header level 2
setInjectedHeader(1);

// 4.Perform the 2nd stage switching
banyan2x2(getlnjectedHeader(0, 1), getinjectedHeader(1, 1),
getBuffer(0, 1), getBuffer(1, 1), getBuffer(0, 2), getBuffer(2,2), 2);

banyan2x2(getlnjectedHeader(2, 1), getlnjectedHeader(3, 1),
getBuffer(2, 1), getBuffer(3, 1), getBuffer(1, 2), getBuffer(3,2), 2);

banyan2x2(getlnjectedHeader(4, 1), getlnjectedHeader(5, 1),
getBuffer(4, 1), getBuffer(5, 1), getBuffer(4, 2), getBuffer(6,2), 2);

85

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

getBuffer(0, 1), getBuffer(1, 1),getBuffer(0, 2), getBuffer(1,2), 2);

banyan2x2(getlnjectedHeader(2, 1), getlnjectedHeader(3, 1),
getBuffer(2, 1), getBuffer(3, 1),getBuffer(2, 2), getBuffer(3,2),2);

Banyan 8x8 Switching Implementation
The logic for Implementation of Banyan 8x8 is similar to Banyan 4x4 where stage 1

switching perform before stage 2 switching and followed by stage 3 switching.

// Banyan 8x8 ports switching

private void banyan8x8() {
// 1.Insert the first cell from each input buffer (stage 1) into injected
/" header level 1
setnjectedHeader(0),

// 2.Perform the Ist stage switching
banyan2x2(getlnjectedHeader(0, 0), getlnjectedHeader(1, 0),
getBuffer(0, 0), getBuffer(1, 0), getBuffer(0, 1), getBuffer(4, 1), 1);

banyan2x2(getlnjectedHeader(2, 0), getlnjectedHeader(3, 0),
getBuffer(2, 0), getBuffer(3, 0), getBuffer(2, 1), getBuffer(6, 1), 1),

banyan2x2(getinjectedHeader(4, 0), getlnjectedHeader(5, 0),
getBuffer(4, 0), getBuffer(5, 0), getBuffer(1, 1), getBuffer(5, 1), 1);

banyan2x2(getlnjectedHeader(6, 0), getinjectedHeader(7, 0),
getBuffer(6, 0), getBuffer(7, 0), getBuffer(3, 1), getBuffer(7, 1), 1);

// 3.Insert the first cell from each mput buffer (stage 1) into injected
// header level 2
setInjectedHeader(1);

// 4.Perform the 2nd stage switching
banyan2x2(getlnjectedHeader(0, 1), getinjectedHeader(1, 1),
getBuffer(0, 1), getBuffer(1, 1), getBuffer(0, 2), getBuffer(2,2), 2);

banyan2x2(getlnjectedHeader(2, 1), getInjectedHeader(3, 1),
getBuffer(2, 1), getBuffer(3, 1), getBuffer(1, 2), getBuffer(3,2),2);

banyan2x2(getlnjectedHeader(4, 1), getInjectedHeader(5, 1),
getBuffer(4, 1), getBuffer(5, 1), getBuffer(4, 2), getBuffer(6,2), 2);

85

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

banyan2x2(getlnjectedHeader(6, 1), getinjectedHeader(7, 1),
getBuffer(6, 1), getBuffer(7, 1), getBuffer(5, 2), getBuffer(7,2),2);

// 5.Insert the first cell from each input buffer (stage 1) into injected
// header level 3
setlnjectedHeader(2);

// 6.Perform the 2nd stage switching
banyan2x2(getlnjectedHeader(0, 2), getInjectedHeader(1, 2),
getBuffer(0, 2), getBuffer(1, 2), getBuffer(0, 3), getBuffer(1,3), 3);

banyan2x2(getlnjectedHeader(2, 2), getInjectedHeader(3, 2),
getBuffer(2, 2), getBuffer(3, 2), getBuffer(2, 3), getBuffer(3, 3), 3),

banyan2x2(getlnjectedHeader(4, 2), getInjectedHeader(5, 2),
getBuffer(4, 2), getBuffer(5, 2), getBuffer(4, 3), getBuffer(5, 3), 3);

banyan2x2(getInjectedHeader(6, 2), getInjectedHeader(7, 2),
getBuffer(6, 2), getBuffer(7, 2), getBuffer(6, 3), getBuffer(7, 3), 3);

Banyan switching execution is performed by the interface method run. Whenever the
clock of BanyanSwitch is running, the following tasks will be executed:
. If it is the completion of one second, resets TCT values for all the records in

routing table.

. Calculates switchingCellCredit and cellCredit.
. Performs cellCredit times of switching.
. Indicates to the global clock that it is ready to move to the next tick.

Below is the coding for method run.

// When the clock is still running
while (!clock.isClockStop()) {
// If it is one second, then reset the tct value in routing table
if (isOneSec(tick)) {
routingTable.resetTct();
/

// Calculate the credit for performing the internal switching
switchingCellCredit += switchingRate;

86

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

cellCredit = (int)switchingCellCredit;
switchingCellCredit -= cellCredit;

// Perform cellCredit times of switching
while(cellCredit > 0) {
if(switchSize == 8) banyan8x8();
else banyan4x4();
cellCredit--;

// Give chance to other thread object to execute
while (Iclock.isAllowedToGo(objectld)) {
clock.tick(objectld);
my{
Thread.sleep(1);

catch (InterruptedException e) {
System.err.println("Exception Occured");

RoutingTable.java

public class RoutingTable {

private Queue ipPortQueue = new Queue(),// input port number

private Queue ipVpiQueue = new Queue(); // input VP

private Queue ipVciQueue = new Queue(); // input VCI

private Queue opPortQueue = new Queue(),// output port number

private Queue opVpiQueue = new Queue(); // output VPI

private Queue opVciQueue = new Queue(); // output VCI

private Queue pcrQueue = new Queue(); // peak cell rate (cells/sec)

private Queue mcrQueue = new Queue(); // minimum cell rate (cells/sec)

private Queue tctQueue = new Queue(); // number of cells transferred
’ // within current second

private int rows = 0; // number of records in routing

// table

Routing table maintains nine attributes. Eight of these attributes are the queue object
for input port, input VPI, input VCI, output port, output VPI, output VCI, PCR, MCR,

and TCT. The other one is used to store current record for the routing table. All of the

87

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

queues in routing table have the same length. Each of these values in the same position
within queue represents a single record for ATM application; i.e. a record in routing
table consists of these eight values. When inserting a record into routing table, all of

these queues must be inserted and number of rows is increased by one and vice versa.

Interface methods included in routing table is inserting and removing record, increase
TCT value and retrieving any of the eight values above based on queue position or
input VPI/VCI values.

5.2 Component Testing

Component testing is done in several classes like QueueNodejava, Queue.java,

RoutingTable java, Buffer java, Switch.java, and BanyanSwitch.java.

Queue.java and QueueNode.java

Both Queue and QueueNode are tested by instantiate a Queue object and three
different types of other objects. These objects are then inserted into the Queue object.
Finally, the content of the Queue object is printed out to ensure the Queue object is
working properly. Since QueueNode is instantiated by Queue, it means that
QueueNode is working properly too. Example below shows that three Integer, Boolean
and String objects are inserted into Queue object by using the method insertAtFront

and insertAtBack, The output shows the Queue is working properly.

1. Instantiate object.

Queue a = new Queue();

Queue queue = new Queue();
Integer a = new Integer(3);
Boolean b = new Boolean(true);
String ¢ = new String(“Test”);

2. Input data into queue object.

queue.insertAtFront(a);

88

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

queue.insertAtFront(b);
queue.insertAtBack(c);
3. Display the output.

print(Queue q) {
Sor(inti=0; i< gq. getNumberOfNodes(); i++)
System.out.println(q.getMiddleObject(i));
}

Output:

true
3
Test

AtmCell.java

Testing on AtmCell java is easy. A new AtmCell object is instantiated and assigned
VPI/VCI value. At the end, the VPI/VCI value is printed out.
1. Instantiate object and insert VPI/VCI value.
AtmCell cell = new AtmCell();
cell.setVPI(10);
cell.setVCI(50);
2. Display output.
System.out.println(“Value for VPL:VCI = “ + cellsgetVPI() + " +
cellsgetVPI());
Output:
Value for VPI:VCI =10:5

RoutingTable.java

RoutingTable is tested by instantiating RoutingTable object and insert several records
into this object. The output shown is exactly same as the input data.
1. Instantiate object of RoutingTable and insert data into it.

RoutingTable rt = new RoutingTable();
rt.insertData(0, 0, 0, 0, 0, 0, 2000, 1000);
rt.insertData(0, 1, 0, 0, 1, 0, 2000, 1000);
rt.insertData(l, 0, 1, 0, 0, 1, 2000, 1000);
rt.insertData(l, 1, 1, 2, 1, 1, 100000,2000);

89

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

2. Display output.

for(int i=0; i < rt.getRows(); i++) {
Sysem.out.println(rt.getlnptPort(i) + rt.getlnputVPI(i) + “ “ +
rt.getlnputVCI(i) + * “rt.getOutputPort(i) + “ “+ rt.getOutputVPI(i)
+ ““+ rt.getOutputVCI(i) + “ “ + rt.getPer(i) + rt.getMcr(i) +
rr.getTet(i);

0 2000 1000 0
0 2000 1000 0
1, 2000 1000 0
1100000 2000 0

Buffer.java

Testing for Buffer class focuses on attributes bufferQueue, max_buff size, and
current_buff_size. bufferQueue is a link list of ATM cell, therefore testing on
retrieving the ATM cell from bufferQueue is important to make sure that the cell can
be inserted, removed and retrieved correctly. A simple test can be done on

max_buff_size and current_buff_size to make sure these two attributes work correctly.

Switch.java and BanyanSwitch.java

Both Switch and BanyanSwitch can be tested together by instantiating a BanyanSwitch
object. Since BanyanSwitch consists of other objects like Buffer and RoutingTable
(which have been tested), testing for BanyanSwitch is focuses on the algorithm for cell

routes within switching elements.

5.3 Module Testing
The major purposes of the simulator module testing are switching testing and ATM
application cell rate testing. The following two sub-sections describe about these two

test.

90

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

5.3.1 Switching Testing

Switching testing is carried out with the purpose to make sure that internal switching
for ATM cells is correctly and successfully reaching desired output port. Switching
testing is further splits into Banyan 4x4 and Banyan 8x8 testing. The test sequence for
both are firstly, initialises routing table. Secondly, pump in ATM cells into input

buffers. Finally, perform switching and get the result.

Banyan 4x4

The routing table for Banyan 4x4 is initialised with the following data.

Table 5.1: Routing Table for Banyan 4x4 Testing

Input port | Input VPI | Input VCI Output Output Output
Port VPI vCI
0 0 0 0 0 0
0 1 0 1 1 0
1 0 1 0 0 1
1 1 1 2 1 1
3 2 3 3 2 3

From routing table, two ATM applications that pass through input port 0 are identified
as VPI/VCI 0/0 and VPI/VCI 1/0. ATM application with VPI/VCI 0/0 is addressed to
output port 0 (i.e. it is routed back to the same port) and ATM application with
VPI/VCI 1/0 is addressed to output port 1. Input port 1 has two applications too and
they are identified as VPI/VCI 0/1 and 1/1, the output ports are 0 and 2 respectively.
Input port 2 does not have any incoming cell and, for input port 3, only one incoming
application (VPI/VCI 2/2) which is addressed to the same output port. The output
VPI/VCI does not need to be changed since there is no conflict for all the ATM
applications that pass through this switch.

91

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

After establishing the routing table, the ATM cells are pumped into the input buffers;
only two cells per ATM application are pumped in. Figure 5.1 illustrates the sequence

of ATM cells in input buffer from port 0 to port 3.

Input buffers
Input port 0 ATM cell with
VPI/VCI value
Input port 1
ATM
Switch

Input port 2

Input port 3

- »

Direction of cell flow

Figure 5.1: Cells Pumped into Input Buffer

The output below shows that all the cells are switched properly
Output buffer at port 0: 0/0, 0/1, 0/0, 0/1

Output buffer at port 1: 1/0, 1/0

Output buffer at port 2: 1/1, 1/1

Output buffer at port 3: 2/3,2/3

Banyan 8x8

92

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

Table 5.2: Routing Table For Banyan 8x8 Testing

Input port | Input VPI | Input VCI Output Output Output
Port VPI VCI
0 0 0 0 0 0
0 1 0 1 1 0
1 0 1 0 0 1
1 1 1 2 1 1
3 2 3 3 2 3
4 4 3 3 4 3
5 5 3 6 5 3
6 6 3 7 6 3

Again, only two cells per ATM application is pumped into input buffers according to
the routing table and the output below shows that all the cells are switched properly.
Output buffer at port 0: 0/0, 0/1, 0/0, 0/1

Output buffer at port 1: 1/0, 1/0

Output buffer at port 2: 1/1, 1/1

Output buffer at port 3: 4/3, 2/3, 4/3,2/3

Output buffer at port 6: 5/3, 5/3

Output buffer at port 7: 6/3, 6/3

5.3.2 Cell Rate' Testing

Cell rate testing is done with the objective to ensure that the switching rate for ABR
application must in between MCR and PCR value, i.e. the TCT value must greater or
equal to MCR and less or equal to PCR within one-second period. Testing is done by
adding in a line of JAVA code into the program. This is to prompt the number of TCT
when there is an ATM cell switched within the switch. Output shows that TCT value

93

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

will increase by one when the ATM cell is switched. Within one-second time, the

value of TCT is increase but never grows higher than PCR value.

5.4 System Testing

System testing is done by building in a new testing package — switchtester package.
Two new classes built are Operation,java and Tester.java. Operation.java consists of
several Java static function like initialise routing table, insert ATM cell into buffers,

and print the content of output buffer to a temporary result file.

Tester java is a driver to perform the system testing. It accepts input from user through
Java applet. Among the important inputs are switch size (or the number of ports), ATM
switch switching rate, buffer size (all the buffers will have same size), and the resulted

file name.

Tester class creates the routing table and insert ATM cells into input buffers. Once user
click the start button, simulation start by creating the ATM Switch thread, follow by
perform the internal switching. At the same time, the value of current tick time,

switchingCellCredit, and cellCredit is printed to result file.

This switching process is carrying on until user press end button. Finally, the content
of output buffers will be printed to the result file. Testing is successful if the result file

compared to desired output values is same.

5.5 Summary

This chapter gives an idea on how the implementation and testing processes on the
switching simulator were carried out. Class implementation explains the attributes of
each class, which are declared together with their data types. The class implementation

also explains the methods in each class. This section is followed by a description on

94

Development of Object Oriented Components for ATM Network Simulation with Emphasis on Switch Architecture

initialisation in Banyan Switch and the execution of Banyan 4x4 and Banyan 8x8. The

driver for executing Banyan Switch is also shown.

Testing of ATM switching stimulator begins with component testing, followed by
module testing and system testing. Component testing focuses on the individual testing
of each class. Meanwhile, module testing focuses on switching testing and cell rate
testing. The system testing tests the whole simulator to ensure that it runs on the actual |
environment. The testing result obtained shows that the simulator is working

correctness.

95

