DIGITAL HOLOGRAPHY AND APPLICATION IN LASER METROLOGY

BY

YONG THIAN KHOK

DEPARTMENT OF PHYSICS
FACULTY OF SCIENCE
UNIVERSITY OF MALAYA

DISSERTATION PRESENTED FOR THE
DEGREE OF MASTER OF SCIENCE
UNIVERSITY OF MALAYA
KUALA LUMPUR
2000
ACKNOWLEDGMENTS

I wish to express my sincere gratitude to my supervisor, Associate Professor Dr. Kwek Kuan Hiang, and my Co-supervisor, Professor Low Kum Sang, who has the innate ability to allow me to be independent in my work and yet at the same time guide and direct me whenever necessary.

I am also thankful to Mr. V. L. Tan, Mr. P. F. Low and my colleagues at the Laser and Optoelectronic Research Laboratory, University of Malaya for their invaluable assistance and cooperation during the course of this work.

Finally, I am eternally indebted to my family and my girl friend, Ms. S. H. Koay for their love, support and firm belief in my ability to carry this work through and to them I would like to dedicate this thesis.

T. K. Yong

February' 2000
ACKNOWLEDGMENTS

I wish to express my sincere gratitude to my supervisor, Associate Professor Dr. Kwek Kuan Hiang, and my Co-supervisor, Professor Low Kum Sang, who has the innate ability to allow me to be independent in my work and yet at the same time guide and direct me whenever necessary.

I am also thankful to Mr. V. L. Tan, Mr. P. F. Low and my colleagues at the Laser and Optoelectronic Research Laboratory, University of Malaya for their invaluable assistance and cooperation during the course of this work.

Finally, I am eternally indebted to my family and my girl friend, Ms. S. H. Koay for their love, support and firm belief in my ability to carry this work through and to them I would like to dedicate this thesis.

T. K. Yong

February’ 2000
A digital holography system has been developed in this study. The object is recorded and the hologram is stored electronically with a charged-couple-device (CCD) camera without any focusing optics. The reconstruction of the digitally sampled hologram is done numerically with a computer. The algorithm and software for numerical reconstruction, which consists in a numerical realization of the Fresnel-Kirchhoff diffraction integral, are designed and implemented with two-dimensional and three-dimensional simple objects. The characteristics of the system have been studied. For the CCD camera (768×494 pixels) been used with spatial resolution of about 100 lines/mm, the angle between reference and object waves is limited to a few degrees. This limits the size of the objects to be recorded to a few centimeters and the distance between object and CCD-target to about a meter.

The system is also implemented in holographic interferometry. Two or more Fresnel holograms, which represent different loading states of the objects, are generated directly on a CCD-target and stored electronically. There are two approaches to calculate the interference phase resulting from the two states of the object in the reconstruction process. Firstly, it is determined from the interference pattern, which is generated by the superposition of the calculated intensity of the object waves. Secondly, it is directly calculated from the phases of the waves of both states. This second approach allows direct calculation of interference phase from the holograms without generating an interference pattern.

Finally, an accurate, simple and direct measurement system for coefficient of linear thermal expansion of materials based on the principle of digital holographic
interferometry is designed. This system is tested for three different common materials, namely aluminium, brass and stainless steel. The results obtained are compares favorably with the standard values.

The major drawback of the method is the low spatial resolution of CCD arrays. Consequently only small objects at large distance from the CCD-target can be resolved. However, with the present CCD camera, the quality of the reconstructed image is good especially when used in holographic interferometry and is comparable to that of conventional holographic techniques using photographic films.
ABSTRAK

Sistem ini juga telah digunakan dalam holografi interferometri. Dua atau lebih hologram Fresnel, yang mewakili keadaan-keadaan objek yang berlainan, dijanakan secara terus ke atas kamera CCD dan disimpankan secara elektronik dalam komputer. Terdapat dua cara untuk menentukan fasa interference yang terhasil dari dua keadaan objek itu semasa dalam proses pembinaan semula. Pertama, ia ditentukan dari corak interference yang mana terhasil dari penggabungan keamatan gelombang objek yang telah dikirakan itu. Kedua, ia dikirakan secara langsung dari fasa kedua-dua keadaan
objek itu. Cara kedua ini membolehkan penentuan fasa interference dari hologram tanpa menjanakan corak interference.

Kelemahan utama teknik ini adalah akibat dari resolusi kamera CCD yang rendah. Akibatnya, hanya objek-objek bersaiz kecil yang berjarak jauh dari kamera CCD dapat direkodkan. Sesungguhnya, dengan kamera CCD yang sedia ada, kualiti imej pembinaan semula yang terhasil adalah amat memuaskan terutamanya dalam holografi interferometri, dan juga setanding dengan imej yang terhasil dari teknik holografi yang menggunakan filem.
List of Figures

Figure 2-1	Optical system used to (a) records an in-line hologram; (b) reconstructed the image from an in-line hologram.	9
Figure 2-2	(a) Recording a hologram. The photographic plate records the interference pattern produced by the light waves scattered from the object and a reference wave reflected to it by the mirror; (b) Reconstruction of the image. The hologram after processing is illuminated with the reference wave from the laser. Light diffracted by the hologram appears to come from the original object.	13
Figure 2-3	Recording (a), (b), and reconstruction (c) of a double exposure holographic interferogram.	17
Figure 3-1	Plane wave illumination of a transmittance.	24
Figure 3-2	Recording a Fresnel hologram.	26
Figure 3-3	Recording a Fraunhofer hologram.	28
Figure 3-4	Recording an image hologram.	29
Figure 3-5	Typical arrangement used to record a Fourier hologram.	30
Figure 3-6	Recording of a lensless Fourier transform hologram.	31
Figure 3-7	System coordinates used in reconstruction.	36
Figure 3-8 Two approaches to determine the interference phase, ΔΦ. 45

Figure 4-1 Off-axis configuration for digital holography. 49

Figure 4-2 The frame out-line of F64PRO software. 50

Figure 4-3 The organization of a TIFF image file. 52

Figure 4-4 Experimental set-up for digital recording of an off-axis hologram. 57

Figure 4-5 Flowchart of the numerical reconstruction of digital hologram. 59

Figure 4-6 (a) Digital sampled hologram and (b) numerical reconstruction – intensity of white UM-letter tag. 64

Figure 4-7 (a) Digital sampled hologram and (b) numerical reconstruction – intensity of pyramid-shaped object. 64

Figure 4-8 Experimental set-up for digital recording of an off-axis hologram of a cantilever. 66

Figure 4-9 Flowchart of numerical reconstruction of the first approach to produce holographic interferogram. 68

Figure 4-10 Flowchart of numerical reconstruction of the second approach to produce interference phase. 69

Figure 4-11 Digitally sampled hologram (a) before, (b) after deformation, and (c) superposition of (a) and (b). Figure (d) is the result of numerical reconstruction of digital hologram (c) that clearly shows the interference pattern. 71
Figure 4-12 Numerical reconstruction of phase: (a) before deformation, and (b) after deformation. Figure (c) shows the interference phase, and (d) shows interference phase after median filtering.

Figure 4-13 (a) Interference phase modulo 2π (a) calculated directly from the holograms, (b) media filtered, and their Line Morphometry.

Figure 4-14 Interference phase from the cantilever with different loads. The loading increases from (a) to (d).

Figure 5-1 Normal deformation of a cantilever beam. (a) Side view of the cantilever beam. Displacement is in the $+z$ direction and illumination in the $-z$ direction. (b) Plane view of the cantilever beam before and after deformation.

Figure 5-2 A linear thermal expansion measurement system based on digital holography.

Figure 5-3 Heating system.

Figure 5-4 Examples of fringe patterns for aluminum at different increase of temperature ΔT. N is the higher fringe order number.

Figure 5-5 Two examples showing the location of fringe order number for aluminum at two different temperature - (a) $\Delta T = 0.4^\circ C$, (b) $\Delta T = 0.6^\circ C$.

Figure 5-6 Linear thermal expansion (aluminium).

Figure 5-7 Linear thermal expansion (brass).

Figure 5-8 Linear thermal expansion (stainless steel).
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2-1</td>
<td>Recording material for holography.</td>
<td>20</td>
</tr>
<tr>
<td>Table 4-1</td>
<td>Specifications of the Sony CCD Monochrome Video Camera Module XC-75 Imaging System.</td>
<td>47</td>
</tr>
<tr>
<td>Table 4-2</td>
<td>Common TIFF Gray-Scale Image Tags.</td>
<td>55</td>
</tr>
<tr>
<td>Table 4-3</td>
<td>Partial TIFF file image information.</td>
<td>62</td>
</tr>
<tr>
<td>Table 5-1</td>
<td>Estimated linear thermal expansion coefficient.</td>
<td>95</td>
</tr>
<tr>
<td>Table 5-2</td>
<td>Standard values of thermal expansion coefficient.</td>
<td>95</td>
</tr>
</tbody>
</table>
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgements</td>
<td>i</td>
</tr>
<tr>
<td>Abstract</td>
<td>ii</td>
</tr>
<tr>
<td>Abstrak</td>
<td>iv</td>
</tr>
<tr>
<td>List of Figures</td>
<td>vi</td>
</tr>
<tr>
<td>List of Tables</td>
<td>ix</td>
</tr>
<tr>
<td>Contents</td>
<td>x</td>
</tr>
<tr>
<td>Chapter 1 Introduction</td>
<td></td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Organisation of The Dissertation</td>
<td>3</td>
</tr>
<tr>
<td>Chapter 2 Review and Basic Principle</td>
<td>5</td>
</tr>
<tr>
<td>2.1 Introduction and Concept of Holographic Imaging</td>
<td>5</td>
</tr>
<tr>
<td>2.2 Historical Development of Optical Holography</td>
<td>6</td>
</tr>
<tr>
<td>2.2.1 Early holography</td>
<td>7</td>
</tr>
<tr>
<td>2.2.2 High quality holographic imaging</td>
<td>12</td>
</tr>
<tr>
<td>2.3 Holographic Interferometry</td>
<td>15</td>
</tr>
<tr>
<td>2.4 Holographic Recording Materials</td>
<td>19</td>
</tr>
</tbody>
</table>
Chapter 3 Wavefront Reconstruction and Digital Holography

3.1 Wavefront Reconstruction
 3.1.1 Intensity of a wave field
 3.1.2 The Fresnel-Kirchhoff diffraction integral

3.2 Classification of Hologram
 3.2.1 Fresnel hologram
 3.2.2 Fraunhofer hologram
 3.2.3 Image hologram
 3.2.4 Fourier hologram
 3.2.5 Lensless Fourier hologram

3.3 Digital Holography
 3.3.1 Digital recording on CCD-sensor
 3.3.2 Numerical reconstruction of Fresnel holograms
 3.3.2.1 Digitization of Fresnel holograms
 3.3.2.2 Reconstruction algorithm

3.4 Digital Holographic Interferometry
 3.4.1 Interference phase determination from interferogram
 3.4.2 Digital interference phase

Chapter 4 Implementation and Experimental Set-up

4.1 Overview

4.2 Recording of The Off-axis Fresnel Holograms On a
CCD-sensor

4.2.1 Recording requirements 47
4.2.2 Capturing software 49
4.2.3 Tag Image File Format (TIFF) 51
 4.2.3.1 Image File Header (IFH) 53
 4.2.3.2 Image File Directory (IFD) 53
4.2.4 Recording procedures 56

4.3 Numerical Reconstruction of Digital Fresnel Hologram 58

4.4 Results and Discussions 61
 4.4.1 Read TIFF file image's program 61
 4.4.2 Numerical reconstruction results and discussions 63

4.5 Digital Holographic Interferometry 65
 4.5.1 Digital recording 65
 4.5.2 Numerical reconstruction 67
 4.5.3 Results and discussions 70

Chapter 5 Accurate Measurement of Linear Thermal Expansion Coefficient 77

5.1 Introduction 77
5.2 Equation for Fringe Interpretation 80
 5.2.1 Out-of-plane displacement of a cantilever 80
 5.2.2 Linear thermal expansion coefficient 82
5.3 Experimental Set-up 84
 5.3.1 Apparatus 84
5.3.2 Procedures 87
5.4 Results and Discussions 88

Chapter 6 General Conclusions 97
6.1 Conclusions 97
6.2 Future Work 99

References 101