DYNAMIC BANDWIDTH ALLOCATION USING NEURAL-FUZZY IN ATM NETWORK

by

CHUA YAN SING

A thesis presented to the Faculty of Computer Science and Information Technology of University Malaya in fulfillment of the requirements of the Degree of

MASTER OF COMPUTER SCIENCE

UNIVERSITY OF MALAYA

2001

ii

To Celine

ACKNOWLEDGMENTS

I am greatly indebted to my family members for their irreplaceable love and understandings.

I would like to extend my heartfelt gratitude to Assoc. Prof. Dr. Selvanathan Narainasamy who has patiently guided and supervised me thorough the course of this project. Special thanks to Mr. Chong Tse Wai who has contributed to the preliminary discussion of this work and thus set a goal for me to achieve.

Special thanks to Dr. Samuel Del Pierro whose generous cooperation in sharing his domain knowledge and furnishing invaluable information had helped improve the overall results of this work.

Heartfelt gratitude to Dr. Mohd. Yazid who is attached with the University Putra Malaysia, Malaysia who has helped to obtain useful information, and indirectly lead to the success of this project.

The precious guidance of Mr. Phang and Mr. Ling Teck Chaw are very much appreciated. I am especially grateful to Mr. Tan Jiann Shin, Mr. Lee Chee Weng, Alex Chong, and Mr. Ng Kah Leong who has helped me with the ATM, Neural Network and Fuzzy Logic concepts.

Finally, I would like extending my warmest love and indebted feelings for my friends, who has given me much encouragement and emotional guidance to the completion of this project.

Mar. 15, 2001

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	iv
LIST OF FIGURES	xiii
LIST OF TABLES	x
LIST OF ABBREVIATIONS	xi
ABTRACT	xv
CHAPTER I	

INTRODUCTION

1.1 Background	1
1.2 Objective	5
1.3 Scope	5
1.4 Disposition	6
1.5 Chapter Summary	6
CHAPTER II	7

LITERATURE REVIEW

2.1 Asynchronous Transfer Mode (ATM)	7
2.1.1 ATM Network Operation	
2.1.2 ATM Protocol Architecture	8
2.1.3 ATM Logical Connections	10
2.1.4 ATM Switching Operation	13
2.1.5 ATM Cells	14
2.1.6 ATM Service Categories	17
2.2 Quality of Service (QoS) and Traffic Attributes	20
2.3 Connection Acceptance Control and Usage Parameter	
	20

TABLE OF CONTENTS (continued)

	2.4 Congestion Control Techniques	.21
	2.4.1 Feedback Facilities 2.4.2 Selection Criteria	
	2.5 Neural Network	
	2.5.1 The Biological Neuron	
	2.5.3 Types of Transfer Function	
	2.5.4 Types of Network Architectures	28
	2.5.5 Prediction Using Neural Network	
	2.6 Fuzzy Logic	.31
	2.7 ATM Traffic Prediction using Neural Network	
	2.8 Dynamic Bandwidth Allocation	.35
	2.8.1 Dynamic Time Slice (DTS) Scheme	35
	2.8.2 Virtual Bandwidth Scheme	
	2.8.3 Minimum Overflow Traffic Algorithm (MOTA)	
	2.8.4 Adaptive Hidden Markov Model (HMM) Prediction	
	2.8.5 Self-Sizing Network 2.8.6 Dynamic Bandwidth Management in ACTS REFORM Project	
	2.8.7 Adaptive Neural Network for Dynamic Bandwidth Allocation	48
	2.9 Fair Bandwidth Share in Bandwidth Allocation	
	2.9.1 ERICA Algorithm	50
	2.9.2 An Accurate Method to Determine the Fair Bandwidth Share	52
	2.9.3 MIT Scheme	
	2.9.4 Min-Max Algorithm	
	2.10 Buffers	
	2.11 Chapter Summary	.57
(CHAPTER III	59
N	METHODOLOGY	

TABLE OF CONTENTS (continued)

3.1 Problem Statement and Analysis	59
3.2 Network Traffic Generation 3.2.1 Generating Traffic	
3.3 Constructing a Neural Network for Traffic Predicting	63
3.4 Fuzzy System for Bandwidth Re-allocation	65
3.5 Chapter Summary	69
CHAPTER IV	70
SIMULATION MODELAND EXPERIMENT RESUL	TS
4.1 Objectives of Simulations	70
4.2 Simulation Model	71
4.3 Simulation using Matlab	73
4.4 Chapter Summary	86
CHAPTER V	87
DISCUSSIONS AND CONCLUSIONS	
5.1 Summary	87
5.2 Conclusion	88
5.3 Suggestions	90
REFERENCES	91
APPENDICES	102
APPENDIX A: ATM Adaptation Layer Protocol Type	103
APPENDIX B: ATM Layer Service Categories	
ADDENDIX C. Conception Schome	105

LIST OF FIGURES

<u>Figure</u> Pag	e
Figure 1.1 The major application areas of AI	3
Figure 2.1 ATM network interfaces [6]	8
Figure 2.2 ATM protocol architecture	8
Figure 2.3 ATM connection relationships [42] 1	1
Figure 2.4 ATM switching operation [6] 1	13
Figure 2.5 Connection setup through ATM signalling (SVC) [6] 1	4
Figure 2.6 ATM cell format – User-Network Interface (UNI) [4] 1	5
Figure 2.7 ATM cell format – Network-Network Interface (NNI)[4] 1	5
Figure 2.8 ATM bit rate services [4] 1	9
Figure 2.9 Congestion technique for various congestion duration [7][8]	22
Figure 2.10 Human nervous system [33] 2	24
Figure 2.11 Biological neuron [34] 2	24
Figure 2.12 Training with input and target [43] 2	26
Figure 2.13 Model artificial neuron [33] 2	26
Figure 2.14 Threshold function [33] 2	27
Figure 2.15 Linear function [33] 2	28
Figure 2.16 Log-Sigmoid function[33] 2	28
Figure 2.17 Single layer feed-forward [42] 2	29
Figure 2.18 Multiple layer feed-forward [42] 2	29
Figure 2.19 Back-propagation [42] 2	29
Figure 2.20 Hopfield [42]	30
Figure 2.21 A comparison of predicate and Fuzzy Logic [83]	31
Figure 2.22 Block diagram of a typical fuzzy controller [49] 3	32
Figure 2.23 An illustration of operation of the DTS scheme [52]	86
Figure 2.24 Tracking used bandwidth on VPCs [72] 4	17
Figure 2.25 Dynamic Capacity Allocation Model [73] 5	55
Figure 3.1 Block diagram of non-linear prediction [33]	53

LIST OF FIGURES (continued)

Figure	Page
Figure 3.2 Tapped Delay Line (TDL).	64
Figure 3.3 Adaptive Filter with TDL for prediction	65
Figure 3.4 Membership function for input – Buffer Available	66
Figure 3.5 Membership function for input – Bandwidth Predicted	67
Figure 3.6 Membership function for input – Bandwidth Available	67
Figure 3.7 Membership function for output – Bandwidth Allocated	68
Figure 4.1 Simulation environment	72
Figure 4.2 Bandwidth Utilisation for Connection 1 during transmission	75
Figure 4.3 Bandwidth Utilisation for Connection 2 during transmission	76
Figure 4.4 Bandwidth Utilisation for Connection 3 during transmission	78
Figure 4.5 Buffer Utilisation for Connection 1 during transmission	79
Figure 4.6 Buffer Utilisation for Connection 2 during transmission	80
Figure 4.7 Buffer Utilisation for Connection 3 during transmission	81
Figure 4.8 Bandwidth utilisation for both three connections	82
Figure 4.9 Buffer utilisation for both three connections	83
Figure 4.10 Percentage of packets dropped for both three connections	84
Figure 4.11 Packets dropped for Connection 1 during transmission	85
Figure 4.12 Packets dropped for Connection 2 during transmission	85
Figure 4.13 Packets dropped for Connection 3 during transmission	86

LIST OF TABLES

Table	Page
Table 2.1 Virtual Path/Virtual Channel Terminology	11
Table 2.2 Payload Type (PT) Field Coding [10]	16
Table 3.1 Examples of Random Number Generated	62
Table 3.2 Examples of Random Arrival During Active/Inactive Period	63
Table 3.3 Inputs, Output and Membership Function	66
Table 3.4 Rule Base For Fuzzy Inference System	68
Table 4.1 Buffer Utilisation	82
Table 4.2 Packets Dropped (%)	86
Table 4.3 Total Number of Packets Dropped	86
Table 5.1 Summaries of Results	88

LIST OF ABBREVIATIONS

1.	AAL	ATM Adaptation Layer
2.	ABR	Available Bit Rate
3.	АННМ	Adaptive Hidden Markov Model
4.	AI	Artificial Intelligence
5.	ARIMA	Auto Regressive Integrated Moving Average
6.	ATM	Asynchronous Transfer Mode
7.	BECN	Backward Explicit Congestion Notification
8.	BD	Bandwidth Distribution
9.	B-ISDN	Broadband Integrated Service Digital Network
10.	CAC	Connection Admission Control
11.	CBR	Constant Bit Rate
12.	CCR	Current Cell Rate
13.	CDV	Cell Delay Variation
14.	CDVT	Cell Delay Variation Tolerance
15.	CLP	Cell Loss Priority
16.	CLR	
17.	CoS	
18.	CS	Convergence Sublayer
19.	CTD	Cell Transfer Delay
20.	DTS	Dynamic Time Slice
21.	EFCI	Explicit Forward Congestion Indication
22.	ER	Explicit Rate
23.	FFNN	Feed-Forward Neural Network
24.	FIFO	
		Generic Flow Control
26.	HBS	High Bandwidth Service
27.	HEC	

LIST OF ABBREVIATIONS (continued)

28. HHM	Hidden Markov Model
29. LAN	Local Area Network
30. MBS	Maximum Burst Size
31. MCR	Minimum Cell Rate
32. MOTA	Minimum Overflow Traffic Algorithm
33. NN	Neural Network
34. NNI	Network-to-Network Interface
35. nrt	non-real time
36. OAM	Operations, Administration, Maintenance
37. PCR	Peak Cell Rate
38. PDU	Protocol Data Unit
39. pps	packets per second
40. PVC	Permanent Virtual Connection
41. QoS	Quality of Service
42. RM	Resources Management
43. rt	
44. SAR	Segmentation and Reassembly
45. SCR	Sustained Cell Rate
46. SDU	Service Data Unit
47. SMS	Statistically Multiplexed Services
48. SONET	Synchronous Optical NETwork
49. SVC	Switched Virtual Connection
50. TDL	Tapped Delay Line
51. UBR	Unspecified Bit Rate
52. UNI	User-to-Network Interface
53. UPC	Usage Parameter Control
54. VC	Virtual Channel
55. VCC	Virtual Channel Connection
56. VBR	Variable Bit Rate

LIST OF ABBREVIATIONS (continued)

57. VCI	Virtual Channel Identifier
58. VCLP	Virtual Cell Loss Probability
59. VPI	Virtual Path Identifier
60. VPC	Virtual Path Connection
61. WAN	Wide Area Network

FACULTY OF COMPUTER SCIENCE AND INFORMATION TECHNOLOGY UNIVERSITY MALAYA

Degree: Master of Computer Science

Name of Candidate: Chua Yan Sing

Title: Dynamic Bandwidth Allocation Using Neural-Fuzzy In ATM Network

Supervisor:

Associate Professor Dr. N. Selvanathan

ABSTRACT

Dynamic bandwidth allocation is becoming one of the crucial issues in the design and research in the computer network. This is due to the continuous increasing demand of intensive applications that require more bandwidth while retaining higher quality. Dynamic bandwidth allocation utilises the current network state information to optimise the bandwidth distribution. The state information can be gathered through prediction using past data and measurement on current state. Agility and flexibility of dynamic bandwidth allocation using Neural-Fuzzy has the advantage that it can adapt to the state changes of the network. ATM network carries heterogeneous traffic and this causes the management on bandwidth to be more complex.

Neural Network and Fuzzy Logic are two fields of Artificial Intelligence, which are commonly used for solving prediction and decision-making problem. Neural-Fuzzy integration has the nature of tolerance of ambiguous and uncertainty. So, it is the most reliable method in controlling bandwidth distribution in the real ATM network environment.

The main objective of this project is to investigate the performance of the ATM network after implementing the dynamic bandwidth allocation algorithm. The Available Bit Rate (ABR) is a type of ATM service classes, in which the dynamic bandwidth allocation can be used to improve its performance.

Simulation of the traffic prediction and bandwidth re-allocation is done and compared with static bandwidth. Detailed investigation will be carried out to measure the effectiveness of the different bandwidth re-allocation methods.