CHAPTER Il
METHODOLOGY

Based on the previous chapters, a proposed solution for implementation is formed. The
adopted ideas and concepts are Periodic Algorithm, traffic prediction and bandwidth re-
allocation. This chapter covers the methodology used to develop a solution for dynamic

bandwidth allocation mentioned in the previous chapter.

3.1 Problem Statement and Analysis

There are many solutions for dynamic bandwidth allocation. It can be using algorithms [52-
56][59] (allocation methods), mathematic formulas [57] (queuing fairness), statistical methods
[60-61], Neural Networks [63-67] or Fuzzy Logic (refer Chapter 1I). Unfortunately, every
solution has its weaknesses. However, these weaknesses can be offset by integrating with

another solutions (e.g. the relation between the Neural Network and the Fuzzy Logic).

This research is attempting to incorporate some of the solutions that have been developed
previously, and then form a new solution model to the dynamic bandwidth allocation. This
solution is based on the integration of a few ideas. These ideas are:

» Periodic Algorithm [59]

o Due to the overhead of setting up or tearing down of the VCs, it is not practical
to change connections’ bandwidth by every 0.01 seconds or as the bandwidth-
required changes. The Periodic Algorithm [59] is implemented in this case.
This algorithm implements the dynamic bandwidth allocation and adjusts the
bandwidth periodically (in fixed equal size time interval).

» Neural Networks

o The prediction of future sample values of a time series can be done by
extracting knowledge from its past values [35-41]. Predicting the future in real-
time (updating prediction on the fly) has potential applications in such fields as
adaptive control and system modelling. In fact, the problem of predicting the

59

future is extremely general. A Neural Network is constructed to predict the
next incoming traffic. This concept is developed by Demuth and Beale [43].
» Fuzzy Logic
o Fuzzy Logic is integrated to calculate the amount of bandwidth to be re-
allocated. This Fuzzy Logic does a simple job by considering the given
parameters, which includes next coming traffic (predicted traffic), available

bandwidth, and available buffer capacity.

In order to implement dynamic bandwidth allocation in ATM network using Neural-Fuzzy,

the following steps must be carried out:

1. Construct a Neural Network for next incoming traffic prediction.

2. Generate training data, which is similar to real traffic. (Of course, traffic captured from
real network operation is better for Neural Network training)

3. Train the constructed Neural Network with the training data.

q

4. Construct a Fuzzy Logic for decisi king (in b: idth re-allocation).

3.2 Network Traffic Generation

Due to unavailability of real traffic (data), a series of faked network traffic must be generated.
This traffic must be similar to the real network operation, because this traffic will be fed into
the Neural Network for training. As proposed in [53][67][80-82],

> the holding time for a connection is exponentially distributed

» the ATM packets is in Poisson arrival in a connection when the connection is active.

Exponential Distribution
The exponential distribution with parameter A (4> 0) is given by
Fx)=1-¢™ x20
The exponential distribution has the property that its mean is equal to its standard deviation:
1

E(X]=Gx=7

60

When this distribution refers to a time interval, such as a service time, it is sometimes referred
to as a random distribution. This is because, for a time interval that has already begun, each
time at which the interval may finish is equally likely (we can often assume that the service
time of a server is exponential). It is difficult to give a sound theoretical reason why service
times should be exponential, but the fact is that in most cases they are very nearly

exponential.

Poisson Distribution

Another important distribution is the Poisson distribution with parameter A (4 > 0), which
takes on values at the points 0, 1, ...

k

Pix =k=2¢? k=012

k!
E[X]1=Var[X]=2

If A <1, then Pr{X=] is maximum for k = 0. If 2 > / but not an integer, then Pr[X=4] is
maximum for the largest integer smaller than A; if A is a positive integer, then there are two

maxima at k= Aand k= A-].

The way in which the Poisson distribution can be applied to arrival rate is as follows:
If items arrive at a link (connection) according to a Poisson process, this may be expressed as
k

(AK) ar
K €

Expected number of items to arrive in time interval 7'= AT

Pr[k items arrive in time interval 7]=

Mean arrival rate, in terms per second = 1

Probability of arrival of an item in a small interval is proportional to the length of the interval
and is independent of the amount of elapsed time since the arrival of the last item. That is,
when items are arriving according to a Poisson process, an item is as likely to arrive at one

instant as any other, regardless of the instants at which the other customers arrive.

3.2.1 Generating Traffic
To generate traffic that is proposed in [53][67][80-82], the following steps have been carried

out:

61

Generate a series of random number using exponential distribution with parameter A.

Table 3.1 Examples of Random Number Generated

1. 1 11. 20 21. 118 31 8 41. S

2 4 12 4 22. 2 32. 10 42. 17
3. 15 13. 9 23. 40 33. 39 43. 29
4. 26 14, 25 24 43 34. 337 44, 14
5. 35 15. 42 25. 11 35. 17 45. 13
6. 2 16. S5 26. 15 36. 13 46. 41
7. 6 17. 40 27. 41 37. 4 47. 2

8 1 18. 6 28. 78 38. 2 48. 11
9. 2 19. 5 29. 33 39. 23 49. 14
10. 19 20. 10 30. 12 40. 7 50. 4

Table 3.1 shows some examples of a sequence of random number generated using random
exponential distribution with 2 = 15. Each random number generated is in terms of 0.1
seconds. To simulate the real environment whereby the connection may become
active/inactive (or on/off), the first random number represents an active duration of 0.1
seconds; the second random number represents an inactive duration (0.4 seconds); the
third random number represents an active duration of 1.5 seconds and so on. As shown in
Table 3.1, the rows with clear background are the active durations while the shaded
background are the inactive durations of a connection (e.g. random number 24 is an
inactive duration with 4.3 seconds and random number 21 is an active duration with 11.8

seconds).

. Generate the random arriving packets in all the active durations by using Poisson

distribution. Firstly, generate the arriving packets for each active duration (rows with clear
background in Table 3.1). The active durations’ random number in Table 3.1 will be used
as the parameter A in the Poisson distribution packets arrival generation (e.g. A = 1 for
random number 1; 2= 15 for random number 3; A = 35 for random number 5).

Table 3.2 shows that 2 packets arrived during the first active duration that lasted 0.1
seconds (the active duration which is generated in step 1). Next, the connection (traffic)
will become inactive (with no packets arrived) for 0.4 seconds (0.2 to 0.5 seconds). On 0.6

h

ds the ion

active again with an arrival of 15 packets and an arrival of
19 packets on 0.7 seconds and so on. ’
For clarity, the cells, which are shaded, are the durations where the connection is inactive

(0 packets arrival).

62

Table 3.2 Examples of Random Arrival During Active/Inactive Period

1. 2 13. 11 25. 0 37. 0 49. 36 61. 38
2. 0 14. 12 26. 0 38 0 50. 31 62. 31
3. 0 15. 21 27. 0 39. 0 51. 46 63. 33
4. 0 16. 18 28. 0 40. 0 52. 30 64. 32
5. 0 17. 17 29. 0 41. 0 53. 35 65. 40
6. 15 18. 12 30. 0 42. 0 54. 40 66. 35
7. 19 19. 14 31. 0 43. 0 S5. 38 67. 38
8. 9 20. 13 32. 0 44. 0 56. 21 68. 41
9. 16 21. 0 33. 0 45. 0 57. 40 69. 29
10. 9 22. 0 34. 0 46. 0 58. 35 70. 30
11. 30 |23 0 35. 0 47. 37 59. 32 71. 39
12. 19 24. 0 36. 0 48. 41 60. 37 72. 40

3. These series of traffic will be transformed into binary format for the Neural Network

training.

3.3 Constructing a Neural Network for Traffic Predicting

There are many ways in constructing a Neural Network for traffic prediction. The requirement
to predict the present value x(n) of a process, given past values of the process that are
uniformly spaced in time as shown by x(n - 7), x(n - 27), ..., x(n - mT), where T is the

sampling period and m is the prediction order.

x(n) ®
x(n-T) | a— N x(n
xn-20) * " Neural x(n))
: Network
x(n-mT) o> - +

Al

Figure 3.1 Block diagram of non-linear prediction [33].

Using error-correction learning in an unsupervised manner could solve the prediction
problem. Since the training examples are drawn directly from the process itself, as illustrated
in Figure 3.1, where x(n) serves the purpose of desired response. Let () represents the one-

step prediction produced by the Neural Network at time n, the error signal e(n) is defined as

63

the difference between x(n) and X(n), which is used to adjust the parameters of the Neural

Network.

A Neural Network called Adaptive Filtering using Tapped Delay Line (TDL) has been
introduced in [43]. This Neural Network is later modified to do prediction. Such TDL is
shown in Figure 3.2. The input signal enters from left, and passes through N-1 delays. The
output of the TDL is an N-dimensional vector, made up of the input signal at the current time

and the previous input signals.

pdi(k)

pdak)

pdy(k)

Figure 3.2 Tapped Delay Line (TDL).

This TDL will be combined with conventional Single Layer Feed-Forward Network with
single neuron (as shown in Figure 3.3). This network will predict the next value p(7) based on
the previous five data. Other notations are defined as follows:

e /—timeunit(r=1,2,....)

e b-bias

® p(t-k) — previous k time input (k= 1,2, ..., 5)

e - number of input (i =1,2,, 6)

e w;— connection weight between p; input and neuron(i =2, 3, ..., 6)

5
. n(r):[Zp,w,)+b, t=1,2,...)
i=l

* a(t) = pure linear transfer function of n(1)
e e(t)=pt)-a(t)
® by = b+ e(t), updating bias

64

o w'" = w/+ eft)p, updating connection weight

i) =p(t)

Target=p(1)

Adjust weights €¢—————

po(k)=p(t-3)

Figure 3.3 Adaptive Filter with TDL for prediction.

The signal to be predicted, p(1), enters from the left into a tapped delay line. The previous five
values of p(t) are available as output from the TDL. The network is trained to change their
weights and bias on each time step to minimize the error e(#) on the far right. If (1) is equal to
zero, then the network output a(?) is exactly equal to p(?). This means the network has done its

prediction properly.

3.4 Fuzzy System for Bandwidth Re-allocation

In [47], principal of the proposed model takes three inputs, which are Bandwidth Predicted,
Bandwidth Available and Buffer Available. Bandwidth is taken from the under-loading
connections and distributed to the over-loading connections. The inputs of the fuzzy inference
system are metrics stated in the chapter before. Every metric is fuzzified into linguistic
variable for easy reading and understanding. Each linguistic variable is associated with a
membership function. In this model, trapezium membership function is chosen for all

harchin fi
h

ip i ins four parameter points (as

linguistic variables. Trapezium

65

shown in Figure 3.4, Figure 3.5, Figure 3.6 and Figure 3.7). The parameter points setting are

shown in the Table 3.3.

Table 3.3 Inputs, Output and Membership Function

P Membership functions J
Input Small Medium Large
| Buffer Available -37,-0.5,9.5,36 9, 45, 60, 91 52, 83, 100, 150
| Bandwidth Predicted -45,0, 18, 43 9, 45, 60, 91 52, 83,101, 150
Bandwidth Available 3,15,34,48 33, 48, 70, 80 59, 80, 101, 135
Output Small Medium Large
Bandwidth Allocated -45,-5,5,12 5,18,30,48 38, 70, 105, 145

The three inputs (Buffer Available, Bandwidth Predicted, and Bandwidth Available) and the

output (Bandwidth Allocated) have three linguistic variables, which are:

» Small
» Medium

» Large

Figure 3.4, Figure 3.5, Figure 3.6 and Figure 3.7 show the membership functions in diagram

presentation.

Membership Function for Buffer Available

Degree of Membership

0 100

Buffer Available (Packet)

Figure 3.4 Membership function for input — Buffer Available.

66

Membership Function for Bandwidth Predicted

Small Medium Large
(=%
2
2
&
o
2
=
=]
8
5
o
[a]
Bandwidth Predicted (Packet)
Figure 3.5 Membership function for input — Bandwidth Predicted.
Membership Function for Bandwidth Available
T T T
Small Medium Large
a 'r 1
2
2
5
= 05t ~
e
=]
8
=3
o
[a]
0 1 1 L
-50 0 50 100 150

Bandwidth Available (Packet)

Figure 3.6 Membership function for input — Bandwidth Available.

67

Membership Function for Bandwidth Allocated

| Smal Megum Large
2]
= 1l
e
153 |
< I}
E |
L Il
S oust J
5 |
S
g |
g |
o
|l

[N

50 0 50 100 150
Bandwidth Allocated (Packet)

Figure 3.7 Membership function for output — Bandwidth Allocated.

Table 3.4 contains the rule base used in fuzzy inference system. In general, a fuzzy

conditional rule contains antecedents and q The d by one or

p

,

more fi pr The fuzzy predi are bined by logical operator AND.
uzzy pel

Table 3.4 Rule Base For Fuzzy Inference System

Rule No. Bandwidth Bandyvidth Bl{ﬂ"er Bandwidth
i Available Predicted Available Allocated
1 Small Small Small Medium
2 Small Small Medium Medium
3 Small Small Large Small
4 Small Medium Small Large
5 Small Medium Medium Medium
6 Small Medi Large Small
7 Small Large Small Large
8 Small Large Medi Large
9 Small Large Large Large
10 Medium Small Small Medi
11 Medium Small Medium Medium
12 Medium Small Large Small
13 Medium Medium Small Large
14 Medium Medi Medi Large
15 Medium Medium Large Medium
16 Medium Large Small - Large
17 Medi Large Medi Large
18 Medi Large Large Medi
19 Large Small Small Medium
20 Large Small Medi Small

68

Table 3.4 Rule Base For Fuzzy Inference System (inued)

21 Large Small Large Small
|22 Large Medium Small Large

23 Large Medium Medium Large

24 Large Medium Large Medium

25 Large Large Small Large

26 Large Large Medium Large

27 Large Large Large Medium

3.5 Chapter Summary

A method has been proposed and documented in this chapter to solve the dynamic bandwidth
allocation problem. Traffic generation method has been previously proposed in [53)[67](80-
82]. The Neural Network for traffic prediction is taken from [43]. The Fuzzy Logic is a
modification from [47] that is originally used for the load balancing application. In the next

chapter, the results gathered from the simulation will be presented and discussed.

69

