Chapter 7
The Implementation Expandability &

Interfacing Techniques

119

Two major parameters (see Chapter 3) which characterise the limitation and capabilities

of neural network impl ions are the expandability of the adopted architecture and
its performance to realise a required task. Therefore, new architecture called systolic-like
architecture is proposed to realise the expandability of the PLP based BAM network.
Secondly, and for the accomplishment of the second parameter an interfacing technique
between associative memory and the user is suggested. This technique called encoding-
comparing technique (ECT) is proposed to enable the user to evaluate the associative

neural network stable states, whether they are true memories or spurious states.

7-1 Network Impl, ion Enh Using Expandabl

Systolic-like Architecture

7-1-1 Introduction

The present part concerns the BAM implementation expandability based on the parallel

learning-processing neuron treated in the precedent chapter. Our purpose here is to

suggest an archi that can the flow of the memorised associated-vectors
to BAM units so that their processing will look like a large’ BAM implementation
formed by a serial concatenation of these units. For this purpose, architecture partially
inheriting the data flow of the systolic arrays called systolic-like architecture 1] is

proposed.

7-1-2 Expandability of the BAM Units
Two crucial factors mentioned in the previous chapter about the digital VLSI

implementation of ANN, are the scale and the scalability of the i I ion

Scalability reflects the ability of the implemented network to be expanded (as unitary

7 In terms of the number of neurons in each layer

120

element) to support any number of neurons and therefore to be more adaptable to the
real need of neural computation. This factor was taken into consideration in our
implementation by exploiting the power of the systolic array architecture. Although the

idea was inspired from the systolic array archi , the suggested architecture is not

totally similar. Figure (1) shows the p posed archi pping PLPN based BAM.

Figure (1). The expandable architecture of the PLPN based BAM.

The VHDL description of the expanded network along with its constituent parts
including the hierarchical top circuit is presented in Appendix D. This top circuit of the
expanded BAM architecture is constituted of two major components. The associated
memories server and a collection of processing elements (PE) which are just the basic
PLPN based BAM units. The associated-memories server itself (see Figure 1) is
composed of two kinds of digital memories, a parallel shift register and a serial shift

register. The parallel shift register holds one of the two associated memories divided into

121

equivalent segments. These segments are sent by the memory in parallel to the processor
units, in such way that each segment will be sent to one processor element. On the other
hand, the serial shift register is composed from the same number of segments as the
parallel shift register and holds the other associated memory whereas it sends serially the

segments to all processor units. In this processing, each of the segments of the parallel

shift register is presented to one layer of the corresponding p ing el whereas
the other layer will receive continuously one by one the different segments of the shift
register. This operation is performed in such way that each processing element processes

the iation b a given segn of the simple memory and all of the segments

of the serial shift register as shown in Figure (2). After that all of the segments of the
serial shift register were sent another new association of memory is to be loaded in

parallel into both of the memory units; the parallel and the serial shift registers. The

above processing continues operating similarly pursuing the above p ing until all
the associated memories are leamnt. Then, one layer of all PEs segments (the processing

layer) updates its outputs and the operating phase of the two layers is to be reversed.

Therefore, the layer which was in the p ing (lation) operating state will turn

to the idle (receiving the number of the iations) state and vice-versa.

Before closing this section, first the systolic array sight of the present implementation

must be ioned. The impl ion scheme shown in the Figure (1) was inspired

from the pattern-matching systolic array suggested by Kung [2]. For this architecture,
there exist two versions: the semi-systolic and the pure systolic array. Figure (3) and

Figure (4) depict the difference between them.

PARALLEL

Figure (2). Four PLPN-based BAM Units Implemented by the Systolic-like
Architecture.
However, without going further on the details of the pattern matching problem and its
resolution by the above systolic architecture, it is worthy to refer to the interesting book

of M. D. Blasi [3].

Pout Pin ¥f . Yinit and (Pio=Sin)
Sout _ Sin
Sin Soat |Pout. Pin

Figure (3). Semi-systolic array for pattern matching problem:
a) Configuration of the systolic array, b) Base cell and transfer function

55 s4 52
2558,
e “—-i—’i—'i—g}'
Stn
Yin ’E}_‘Ynu Yout €— Yin and (Sin=Yin)
b)

Figure (4). The Sample Text Ch Systolic M nt (Pattern-Matching Problem)

The main fact that relates between our suggested architecture and the above architecture

is the distribution of the information flow to the p ing el This is realised so
that all the processing elements will realise the memory learning recalling in parallel
fashion. Furthermore, the architecture of the data flow, especially the semi-systolic
architecture in which the S data (see Figure (3)) flows like one of the associated vectors

(X layer) flows to the BAM units although the two others differ. However, this

difference is made b of the i ivity among the processing elements in
the semi-systolic array is unused in our implementation. The reason is the processing

independence of the different BAM units except that each unit has to perform the

iation b each of the same system memory. Therefore, this modified

version of the systolic array archi e is sui for the impl ion of the

strategy of parallel learning processing to realise the expandability of the network.

7-1-3 VHDL Implementation of the Systolic-Like Architecture

7-1-3-1 Intermediate Association Memory

The major unit in this impl ion is the iation memory in which a pair of

associated memories are stored in segments and sent continuously to the BAMs units.

124

However, this memory unit is built based on two parts: the serial shifting part and the
parallel shifting part. From Figure (1), the parallel memory presents each segment of an

associated image to each segment of a layer in each BAM unit. However, the other part

sends the iated image serially segr by to the next layer of
each BAM unit. Besides, both registers perform under control signals three tasks namely
shifting, loading and freezing. For the last case, the registers are frozen as they receive a
given signal from the corresponding port and will perform no operation. In Figure (5)
and Figure (6) respectively, the basic unit of the memory register and a register memory

composed of eight bits (units), are presented.

Figure (5). The Memory Basic Unit Schematic.

7-1-3-2 Associations Memory Unit

This memory unit is designed to hold the system associations and it is based on the same
basic memory register as the previous. This memory is a conglomerate of memory
associations of four BAM units, each of which is composed of 24 neurons by 32
neurons. Exploiting the scalability of the systolic-like architecture, a BAM system
composed of 4 x (24 by 32) neurons (i.e., (96 by 128) neurons) has been designed.
Therefore, the associations-memory_ unit stores the system associations composed of 96

bits (neurons) in one layer and 128 bits (neurons) on the other layer.

7-1-3-3 System Control Unit

Although, there is no separate control unit in the system source code, a control process
statement in the system VHDL description is implemented. This control process governs
the different parts of the system circuit to maintain their consistency and avoid any
processing interference. Although this control unit has not been independently designed,

an alternative to realise that is possible and does not require complication.

Figure (6). Memory Register Composed of eight Basic Units.

7-1-4 Conclusion

New architecture inheriting the data-flow parallelism of the parallel-array processors and
performing the PLP strategy based BAM expandability, is proposed. It is thought that
the PLP strategy can benefit largely from these kinds of parallel architectures, mainly
systolic arrays, for mapping other neural networks, because of their common parallelism

of the dataflow. The mapping of the PLP strategy to implement other neural networks

126

such as multi-layer percep and its backpropagation learning rule is possible but we

think it might consume much more time. This time ing of the archi is due

to the lexity of backp learning rule, compared with the simple Hebbian

.

rule. Consequently, the PLP strategy is more dedicated for Hebbian-based

7-2 Network Impl ion Enh Using Spurious State Detection
7-2-1 Introduction
A technique called the Encoding-Comparing Technique (ECT) is proposed to detect the

spurious states of a neural associative memory from those corresponding to stored states.

The cyclic encoding strategy has been adopted b of its simplicity and its hard:

low cost.

The purpose of the ECT technique [4] injection is the differentiation between a stored
memory and a spurious one, which are stable states after the relaxation of the network
(BAM). Similarly but in another context Fontanary and Koberle [5] introduced another
technique based on modifying slightly the Hebbian-learning rule.

The ECT technique is dedicated h T to create an interface between the user and the

associative neural memory rather than enhancing its recalling process. The candidate
memory is encoded before being sent to the neural memory. The generated code is
concatenated with its vector generator (candidate memory) to form a coded memory,
which will be sent to the network for learning and storing. After the learning phase (or
the learning-processing phase) and when the network gets its stable state the encoder is
used again to encode the corresponding part to the vector generator in order to get the
corresponding code. Then a comparison between the generated code and the code digits

of the stable state determines whether it corresponds to a stored state or no. In similar

work, L. Personnaz et al., [6] have proposed the use of an encoder inside a neural
associative memory (Hopfield network). The difference between their technique and the
present one, is the use of the resultant stable state and its inverse to determine whether it

corresponds to a stored memory or no.

7-2-2 Error-Correcting Coding Theory
The digital coded systems for either data transmission or data storage has much in

Since the ch: 1 or storage medium is subject of various types of noise,
distortion, and interference, the channel or the storage medium differs from its input
because they are both sensitive to the errors that can result from impaired transmission.
The theory and application of error-correcting coding [7] are dedicated for protection of
digital information against the errors that occur during data storage or transmission.
Many ingenious error-correction techniques based on vigorous mathematical theory
have been developed and have many important and frequent applications. The current

problem with any high-speed data communication system is how to control the errors

that occur during data ission through a noisy ch: 1. In order to achieve reliable
communications, good codes and efficient decoding algorithms are needed. The

knowledge of error-correction coding is in great demand and becomes an important asset

for many practising engi and p scientists who are involved in the design of
large digital systems.
The block diagram in Figure (7) ill the basic el for ission or storage

of digital information through a coded system. For this system, all information
transferred between blocks must be in digital form if error control is to be used. The data

which enter the communication (storage) system from the information source, are first

128

processed by a source encoder that is designed to convert the source information into a

digital coded form d called the information seq The ch 1 d trarisforms
the information sequence into a binary-coded sequence ¢ called a code word. The binary

digits in a code word from the channel encoder are fed into a modulator (or writing unit)

that transforms each unit bit into an el 'y signal form. The form that
entered the channel (storage medium) will be corrupted by noise. The waveform channel
consists of all the hardware and physical media that the waveform passes through in
going from the output of the modulator (writing unit) to the input of the demodulator (or
reading unit). Typical examples of waveform channels are telephone lines, microwave
links, high-frequency links. ..etc.

——— —)

EHEHE
= J

Digil source

Chennel
(sorage m edium)

Demodulster
L (reading unif)
—— —
Digital duta sirk Digtal chennel
Figure (7). Schematic rep ing of the encoding-decoding technique mapping

Each of these examples is subject to various types of noise disturbances. Next, the
resulting received signal is processed first by the demodulator and then by the channel
decoder. The demodulator (reading unit) makes a decision for each received signal of

duration T seconds to determine which of the two possible digits, one or zero, was

transmitted. The output of the demodulator is called the received word r. This word r

may not match the transmitted code word ¢ because of transmission error. The Channel

decoder transforms the received sequence 7 into a binary seq d’, or the esti d
information sequence. Since the noise may cause some decoding errors, the channel
decoder must be implemented to minimise the probability of the decoding error. The
channel decoder uses the syndrome of a received code word 7 to correct the errors in the
received word and then produces an estimate of the information sequence. If all errors
are corrected, the estimated information sequence d’ matches the original source
information d. The source decoder transforms the estimated sequence d’ into an estimate
of the source output and delivers this estimate to the user. Thus the source decoder
performs the inverse operation of the source encoder and delivers its output to the data
sink.

A cyclic coding is a technique that generates cyclically a code word ¢ of » digits for a
data word d of n-k digits. In its systematic structure, the code word contains in its first k
digits what is called the parity-check bits representing the code core. In its second n-k
bits, it stores the data word bits. The code is generated in a polynomial form by the so-
called code generator represented by g (x) that is of degree n-k, so the cyclic code is
represented by g (x), n, and k or simply referred to by (n,k). The polynomial form
means that the sequences of the data to be coded are to be the coefficients of non-
decreasing degree polynomial; e.g., the data word (10]]) is to be represented by
1% 4+0%x +1*x7 414 % =14x2 +x°. To generate a code word in a non-systematic
structure, the data word is multiplied by the generator polynomial. Consider the (7, 4)

cyclic code whose generator polynomial of degree 3 is g(x)=1+x+x*, and d = (1o11)

130

so the ding information polynomial is then d(x)=1+x?s0 the code

polynomial becomes c(x)=d(x)* g(x)= (l+x’)‘(l+.\r-¢»x’)=l+x+.\'2 +x* and the
code word willbe c= (100111 0). To generate the code word in a systematic structure,
one has to divide (look at the referred book for more details about the division)
x""‘d(x) by g(x) thus one has x"* *d(x)=q(x)* g(x)+/(x) where I(x) represents
the remainder polynomial and its coefficient are the parity-check bits. As an example,
consider the above example with a word data d = (1100) so d(x)=1+x. Since
n-k=3, then x’*d(x)=x" +x* and by dividing it over the code generator yields the
remainder polynomial /(x)=1+x? and the code polynomial c(x)=1+x*+x* +x‘or, ¢

=(1011100).

7-2-3 The Encoder Implementation and its BAM Injection

We have seen that the encoding of £-bit information sequence involves computing the
parity-check bits. Thus, the encoding is accomplished by using a division circuit, which

is (n-k)-stage shift register with feedback connections specified by the generator

poly ial that is rep dby g(x).In i ding, which is Ily used

for high-rate codes, the information bits are itted without al ion as shown in

Figure (8), where g,,g,, -, g, are the coefficients of the code generator. The
rectangles represent one-bit shift register and the Gate is a switcher that is closed during
information sequence flow and open at its end. The adopted code generator is
g(x)=x*+x? +1, which is a primitive polynomial over the Gaulois field GF(2) [7]. It

generates a code of 5 bits to cover the capacity of the implemented BAM. However, the

131

cyclic encoder which is able to generate 2° = 32 different codes, represents the minimum

cyclic encoder to be used for the EC techni impl ion. The circuit sch

implementation is shown in the diagram of Figure (9).

Figure (8): Rep ion of the impl ion of the cyclic d

The Gate have been designed by including a synch counter so that the Gate’s
output will be disconnected from its input whenever the counter indicates the number of

bits of the word data

Figure (9). General description oi' the implemented cyclic encoder

et
i)

The above general schematic of the cyclic encoder circuit is developed by the VHDL
description presented in Appendix E along with its injection in the BAM network. The
schematic in Figure (10) is the Synopsis tool generation of the cyclic encoder based on

its VHDL description.

Ouk B G 5 S rZa
e Timir L) 77

Figure (10). VHDL schematic description of the implemented cyclic encoder

When the BAM network configuration achieves stability, the encoder is enabled and the
resultant data will be divided so that only data part will be stored into the word data shift
register. Its coded version will be stored into the corresponding register. Whenever the
counter (inside the Gate) indicates the number of bits of the code word (5 + number of
bits of the word data), the code part (parity-check bits) of the coded word will be sent to

the The later pares the parity-check part with the same part (the first 5

bits) of the original configuration. When the comparison indi a positive resp
an output signal gets a logic value ‘1" indicating that the configuration corresponds to
one of the stored memories. In the other case, the circuit will reverse the input

configuration, and compute again the parity-check bits before realising the comparison.

When the comparison gives a positive response, this means that the network has fallen
into a reverse state of one of the stored memories. The process is clarified in the diagram
of the Figure (11). It is well known, for neural networks based on the Hebbian-learning
rule, that the reverse of any stored configuration is also a stable state of the network.

Consequently, it can converge to any memory as well as its reverse configuration.

Code bits (part) A
. . Comparator
Patity_check bit ® Q)
NoYes NoYes
x| Mubtiplex Encoder
= |
j
Neg_recall(0")
Neg_recall(0")
Pos_recall(*1)

Figure (11). The injection strategy of the encoder into the BAM circuit

VHDL simulation of the signals and buses dynamic of the implemented PLPN-based

BAM including the injected ECT circuit are shown in Figures (12) and (13).

7-2-4 Encoding C: ing Technique Simulation Results

P q

The encoding comparing technique (ECT) does not give always the right answer and
therefore, it has a margin of failure. The technique error rate depends on the average

I ing di between the stimulus and the stored memories. The average hamming

di is the mini I ing di with a given image or its reverse. Let
assume X layer, the layer having the minimum number of neurons, and ¥ the other layer.
The simulation results depicted by the Figures (14) to (21) are obtained using a C-

programming where the h ing distance is cc d within the indices of the

134

axes. The first remark is the independence of the ECT success rate on the hamming
distance between the input stimulus and the ¥ stored memories. This means that the ECT
success rates depend only on the layer of low number of neurons. Secondly, when the
input average hamming distance with any of the X stored memories is low, the ECT
failure rate is low. However, when this distance grows high the failure rate increases and
achieves its maximum when the hamming distance is more or less half of the number of
the X layer neurons. Finally, as the number of stored memories grows, the contrast of the
failure rate of the ECT technique or the success rate of the recalling does not change
although their values go higher and lower respectively. Nevertheless, the failure rate of
the ECT technique does not exceed much 25% (27 %) when the number of the
associated memories reach the network capacity limit. In the present case, the network
capacity is equal to the number of neurons of the X layer (24). Consequently, the ECT
technique seems a good tool to ‘interface’ the user with the ANN chip especially
Hebbian-based networks. In fact, this 'interface’ is not perfect especially when the key
vector (input configuration stimulus) is far from any of the stored memories or the stored

memories are not orthogonal (as the present case is). As the Hamming distance

, the ECT techni loses i ingly the user ‘confidence’ because of its

q

increasing failure rate. In the practical cases, the key (stimulus) is not so far from any of

the stored memories and therefore, the ECT technique should be useful. Finally, it is

4

worth mentioning the strong dependence between the perfect recall rate and the

orthogonality of the stored memories [8].

135

> L ASUNSTIBY_WX(0:31)

AamaTw_upx

Figure (12). VHDL simulation Diagram of the Cyclic Encoder C (51,56) injected in
BAM circuit (24 Neurons/ 32 Neurons) in the time interval [0 ns, 1200 ns].

136

vy

v

v

YvYyvuw

.A_S2ANSTIBY_WX(o:31)

i FEFFFFFE

4_32MBTIW_uPx

| L |

- A_TANSTIY X(0:31)

-A_SANSTVOOWIEY(0:1)

00011111111100000000000001 111111
[1 °

- A_RINSTVOOWICLK

A SUINSTNOON 1TB_ASSV(0:32)

11FRO0OTF

~A_RANSTIVOOWN 1/B0L_IN(0:31)

1FFo00Tr

A _S2NSTVOW/OUTPUT
~A_TINSTVODIWIISEND

-A_SINSTISX WY(023)

4_3MSTIW_UPY

~A_SUNSTIX_Y(023)

~A_SANSTVZONINEY(0:1)

A_RINSTIVZ(OWVVOLK

A_R/NSTN2(OWVYTB_ASSV(0:24)

oFso0rr

A_R/NSTV2(ONVSGL_IN(0:23)

Fo001F

L

rosarrrscor I

_P... [000'Boocooso-Poooooso-possacoe]

. 0000000000000 1FF0007F

1

I

NN EN NN N AT

TF000TFFR00IF

75 0001FF8001F [oarrFooorre0

03FFFO00FFFB0

v J

Figure (13). VHDL simulation Diagram of the Cyclic Encoder C (51,56) injected in
BAM circuit (24 Neurons/ 32 Neurons) in the time interval [7200 ns, 8400 ns).

Cxety Enadec tec b

the Swcers Raw ot aBAM
1 sred wonds |

o bt Hamniag Disace
Figure (14). (EC) Technique S rate (4 stored ies)
Cyrlic Lawdet ©chaiqus
e

-

o

. &
H

A Lt Hamoming 1P

Figure (15). (EC) Technique failure rate measuring the success rate (4 stored memories)

Cxle Lomdes b i st of de Mxcess Rate of 1B AM

Figure (16). (EC) Technique S rate (15 stored memories)

Cuk Emoder weehniyoe tiffar o mesurig (e Suecess Bate ofa B AM
2 tNeur e | 1 INewsw we |1 <ioned wanda]

Figure (17). (EC) Technique failure rates measuring the success rate (15 stored
: memories).

[

e

Figure (18) (EC) Technique S rate (20 stored memories)

se Kate afaBaM

wBe Emder fechnkque & Qs
24Newons 1 12

Figure (19). (EC) Technique failure rate measuring the success rate (20 stored
memories)

igue mes wemont of G Succes

120% woms 24 s iowed wonds]

Q

Figure (20). (EC) Technig

rate (24 stored

Cyele Emodec mehad oo filkare cate mesarimg the Suwcess Kem of o BAM
2 Newore

Nz ro e) 24 ste red wwad: |

»
‘l -._
ic A
*
= e
%
1Y
)
%
}

¢
aming Vst

-

memories

Figure (21). (EC) Technique failure rate measuring the success rate (24 stored

