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2-1 Biological Neural Networks

2-1-1 The Structure of the Neuron

The detailed investigation of the internal structure of neural cells has taken a long time
to reveal its composition. Especially after the invention of the electron microscope some
50 years ago, the internal structure of the neural cells has revealed that all neurons are
constructed from the same basic parts, independent of their size and shape (see Figure
(1)). The bulbous central part is called the cell body or soma; from it, project several
root-like extensions, the dendrites, as well as a single tubular fibre, the axon, which
ramifies at its end into a number of small branches.

The size of the soma of a typical neuron is about 0-80 4o , while dendrites and axons
have a diameter of a few ,m . While the dendrites serve as receptors for signals from
adjacent neurons, the axon’s purpose is the transmission of the generated neural activity
to other nerve cells or to muscle fibres. In the first case, the term interneuron is often
used, whereas the neuron is called a motor neuron in the latter. A third type of neurons,
which receive information from muscles or sensory organs, such as the eye or ear, is
called a receptor neuron.

The joint between the end of an axonic branch, which assumes a plate-like shape, and
another neuron or muscle, is called a synapse. At the synapse the two cells are separated
by a tiny gap only about 200 nm wide (the synaptic gap or cleft), barely visible to R. Y.

Cajal, but easily revealed by modern techniques. Structures are spoken of in Telation to

the synapse as presynaptic and p iptic, e.g. postsynaptic neuron. The synapses may

be located either directly at the cell body, or at the dendrites of the subsequent neuron,

and their gth generally diminishing with i ing di from the cell body.



Figure (1). Structure of a typical neuron (schematic)

The total length of neurons shows great variations: from 0.01 mm for interneuron in the

human brain, up to 1 m for the neurons in the limb.

2-1-2 The Inter-Neuronal Com munication Mechanism

Nervous signals are transmitted either electrically or chemically. Electrical

prevails in the interior of a neuron, whereas chemical mechanisms operate between
different neurons, i.e. at the synapses. Electrical transmission is based on an electrical
discharge, which starts at the cell body and then travels down the axon to the various
synaptic connections. In the state of inactivity. the interior of the neuron, the protoplasm.
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Figure (2). The hanism of the propagation of the excitation wave.

The interval between two electrical spikes can take any value (longer than the
regeneration period) and the combination of analogue and digital signal processing is

utilised to obtain optimal quality, security, and simplicity of data

The speed of propagation of the discharge signal along the nerve fibre also varies
greatly. In the cells of the human brain, the signal travels with a velocity of about 0.5 to
2.0 meter per second. Consequently, this would allow any two cells of the brain to
communicate within 20-40 ms, which is something like a temporal quantum in the
operation of the human central nervous system. However, it would cause unacceptably
long reaction times for peripheral neurons connecting brain and limbs. It means that a
person would hit the ground before even knowing that he had stumbled. To increase the
speed of propagation, the axon for such neurons are composed of individual segments
that are covered by an electrically insulating myelin sheath, which is interrupted from
time to time at the so-called Ranvier nodes (see Figure (1)). The presence of an
insulating cover causes the signal to propagate along the axon as in a wave guide from
one Ranvier node to the next, triggering almost instantaneous discharge within the whole
myelinated segment. This mode t_:f propagation, called salutatory conduction, allows for

transmission velocities of up to 100 m/s.



is negatively charged against the surrounding neural liquid. This resting potential of

about ~70 mV is supported by the action of the cell b which is imp ble for

Na' ions, causing a deficiency of positive ions in the protoplasm.

Signals arriving from the synaptic connections result in a transient weakening, or

depolarisation, of the resting potential. When this is reduced below —60 mV, the

membrane suddenly loses its impermeability against Na' ions, which enter the
1 and lise the

P P P

ial difference, as illustrated in the left part of the

Figure (2). This discharge may be so violent that the interior of the neuron even acquires

a slightly positive potential against its sur dings. The b then gradually

its original properties and reg its original resting potential over a period
of several milliseconds. During this recovery period, the neuron remains incapable of
further excitation. When the recovery is completed, the neuron is in its resting state and
can “fire” again. The discharge, which initially occurs in the cell body, then propagates
along the axon to the synapses. Because the depolarised parts of the neuron are in a state
of recovery and cannot immediately become active again, the pulse of electrical activity
always propagates in one direction: away from the cell body.

Since the discharge of each new segment of the axon is always complete, the intensity of
the transmitted signal does not decay as it propagates along the nerve fibre. One might
be tempted to conclude that the signal transmission in the nervous system is of digital
nature: the neuron is either fully active or it is inactive. However, this conclusion would
be wrong, because the intensity of a nervous signal is coded in the frequency of

succession of the invariant pulses of activity, which can range from 1 to 100 per second.



2-1-3 The Synapses

The discharge signal travelling along the axon comes to a halt at the synapses, because
there is no conducting bridge to the next neuron or muscle fibre. Transmission of the
signal across the synaptic gap is mostly effected by chemical mechanisms. Direct
electrical mechanism is also known to occur in rare cases, but is of less interest here.

The reason behind this disinterestedness is the much lower degree of adjustability of this

type of synapse. In chemical ission, when the spike signal arrives at the
presynaptic nerve terminal, special sub called neurotr itters are liberated in
tiny from vesicl ined in the endplate (e.g. about 107 mol acetylcholin
per impulse). The tr itter release app to be triggered by the influx of Ca™ ions

into the presynaptic axon during the depolarisation caused by the flow of Na* ions. The
neurotransmitter travels across the synaptic cleft, as shown in Figure (3), reaching the

postsynaptic neuron (or muscle fibre) within about 0.5 milliseconds. Upon their arrival

.

at special receptors, these substances modify the of the postsynapti

membrane for particular ions (Na*, K*, CL’, etc.). Then this modification flows in or out
of the neuron, causing a polarisation or depolarisation of the local postsynaptic potential.
After their action, the transmitter molecules are quickly broken up by enzymes into

h

the ionic cond of the t

pieces that are less potent in

If the induced polarisation potential 8U is positive i.e. if the total strength of the resting

potential is reduced, the synapse is termed excitatory, b the infl of the
synapse tends to activate the postsynaptic neuron. If SU is negative, the synapse is
called inhibitory, since it counteracts excitation of the neuron. Inhibitory synapses often

terminate at the presynaptic plates of other axon, inhibiting their ability to send



neurc i across the synaptic gap. In this case, one speaks of presynaptic
inhibition. There is evidence that all the synaptic endings of an axon are either of an
excitatory or an inhibitory nature (Dale’s law). Besides, there are significant structural

differences between those two types of synapses (e.g., the conductance for Na* and K*

hanges at excitatory synapses and that for CI” at inhibitory synapses).
Neuron A
A
’ Ympulse
Neuron B
B
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Figure (3). Synaptic-junctions Transmission Mechanism of the Neuron Excitation Wave.

However, an insisting question arises about the activity of the postsynaptic neuron.

Tated

Under which condition is the postsynaptic neuron sti to b active?

Although, in principle, a single synapse can inspire a neuron to fire, this is rarely so,
especially if the synapse is located at the outer end of a dendrite. Just as each axon sends
synapses to the dendrites and bodies of a number of downstream neurons, so each
neuron connected to many upstream neurons, which transmit their signal to it. The body
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of a neuron acts as a kind of summing device, which adds the depolarising effects of its
various input signals. These effects decay with a characteristic time of 5 to 10

milliseconds, but if several signals arrive at the same synapse over such period, their

: y effects late. A high rate of repetition of firing of a neuron therefore
expresses a large intensity of the signal. When the total magnitude of the depolarisation
potential in the cell body exceeds the critical threshold (about 10 m¥), the neuron fires.
The influence of a given synapse therefore depends on several aspects: the inherent
strength of its depolarising effect, its location with respect to the cell body, and the
repetition rate of the arriving signals. There is strong evidence that the inherent strength

of a synapse is not fixed and that it will not remain at that state. As originally postulated

by D. Hebb 1], the gth of a synapti ion can be adjusted, if its level of
activity changes. An active synapse, which repeatedly triggers the activation of its
postsynaptic neuron, will grow in strength, while the others will gradually weaken. The
mechanism of synaptic plasticity in the structure of neural connectivity, known as
Hebb’s rule, appears to play a dominant role in the complex process of learning.

The release of neurotransmitters as well as their action at the receptor sites on the

postsynaptic membrane can be chemically inhibited by sub such as pine or
curare etc. Similar but less drastic changes of the synaptic efficacy are likely to occur
naturally in the body, giving all synapses a certain degree of plasticity. Another point

worth ioning is that itter is randomly emitted at every nerve

ending in quanta of a few 1000 molecules at a low rate. The rate of release is increased
enormously upon arrival of an impulse, a single action potential causing the emission of

100 to 300 quanta within a very short time. However, even the random low-activity level
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results in small depolarisation potentials, which may cause, from time to time, the

spontaneous activation of the postsynaptic neuron.

2-2 Physics and Artificial Neural Networks

2-2-1 Historical Evolution

Historically, Crag and Temperley were the first physicists who mentioned the analogy
between the activity of neural network and the collective states of coupled magnetic
dipoles, in a paper which did not get much attention [2]. Twenty years later, Little [3]
made another analogy with the magnetic system, where he related between the synaptic
noise and temperature. Furthermore, he suggested that persistent firing states of neural
network dynamics appear just like the ordered phases of the magnetic system. He argued
for the relevance and applicability of the statistical mechanics concepts to the theory of
neural networks. Other, but more important analogy was made by Hopfield ([4], [5])
who completed successfully the series of analogy between the magnetic system and

neural networks by introducing the pt of computational energy. In his contribution,

he emulated the computational energy of the neural networks to the Hamiltonian of the
magnetic system. He studied the network with symmetric couplings, and therefore
described the system by a Hamiltonian, and showed the equivalence between the
asymptotic dynamical behaviour of such networks and equilibrium thermodynamical
properties of random magnetic systems similar to spin glasses. The model (which had
taken his name) was subsequently solved analytically using the powerful tools of
statistical mechanics by Gutfreund et al [6]. This was the first successful and non-trivial
application of statistical mechanics in this field, giving rise to a variety of new and

surprising results. The last contribution was the work of Gardner [7], who proposed a



new app applying statistical hanics in the space of possible networks. The

Gardner h allows h , the calculation of certain limits on the storage

capacity and computational capability.

2-2-2 Statistical Mechanics An alysis Tool

During the last century, statistical hanics has improved its tools perfectly in studying

the emergence of collective behaviour of large i d mi pic el Its
usage has been successful to explain the macroscopic properties of the solids and gases
using their basic units (atoms and molecules) properties. Consequently, statistical
mechanics could be applied to study the emergence of the collective behaviour of
intelligent elements such as neurons. Furthermore, as neural networks are processing
information and as the relation between information and thermodynamics was
established long time ago, ever since the work of Von Neumann and Shannon, then the
use of statistical mechanics in neural networks is justified. Despite these arguments, the

application of statistical mechanics to study neural networks is not straightforward. This

1

is t of the Y y of the i ion, b the biologi

transmitted through the synaptic strengths, whereas, statistical mechanics is based in its

formalism on the sy y of the i i d by Newton ‘s third law.

During last few decad istical hanics has explored heterogeneous systems, in
with simple hc y . Particularly, the study of spins glasses,

which are spin systems with random interactions, has achieved dous technical and

conceptual progress. The similarity of the neuron threshold to the automation behaviour
of two-state Ising spin has created a tidy relation between neural networks and spin

glasses. As a mater of fact, some models used in spin glass theory can be related just to
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neural networks without having a real relation with the spin glass materials
(neighbourhood interaction). At the same time, these models are not purely biological,
which may decrease the power of the artificial model due to the huge information lost by

denying some biological properties (interaction non-symmetry) of the neural networks.

In brief, the study of neural networks by statistical physicists has acquired dy ics of

its own. It will go on, even if the ion with biological experiments

loose for some time. However, despite this relative autonomy, physicists will be
chronically looking for guidance from biology. The reason is simply because that the
space of models that one can invent and study is too vast. Obviously, much of the
excitement on neural networks, i.e., networks made of neurons interacting via synapses,
comes from the fact that (biologically) the intelligent behaviour could be obtained with
collections of such elements. It is a safe bet to predict that many further important steps

and results can be achieved by such similar kinds of hints.

2-2-3 Introduction of Statistical Mechanics into Artificial Neural Networks

2-2-3-1 Neuron Modelling

Itis d that ication among the biological is mostly ded in the

pulse frequencies interchanged among them. Consequently, the neuron mathematical
modelling is based on this assumption of frequency code i.e. all information is carried by
the firing frequencies of the network neurons. In this model, the average frequencies of

h

pulses i ing gh itatory and inhibitory synapses determine how often the

receiving neuron gets into the state of firing a pulse. The output frequency y,of the

) .

x, of the d to this neuron in

neuron i on the input fr

a two-step manner. The first is that the local time-averaged potential z,of the neuron
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(soma) i accumulates in a smooth manner the input excitations arriving from the

different synapses in a linear function: z,=2, +ZJ” x, (1)
7

The neuron rest potential is represented by z,. The second step is the neuron non-linear

response to the average potential z, in determining the output firing as follows:

2 =/{th/ —UJ. ()
J

The transfer function of equation (2) is the sigmoid function similar to a step-wise

function centred at the neuron firing frequency threshold. The reason of the first
assumption is that (1) represents the first order of the electro-chemical response of the
average potential of the soma to the incoming pulse. However, the second processing
step is explained by the response of the biological neuron, which does not respond at all
for low frequencies, and does not generate pulses of more than the refractory time.

In the simplified, model of McCulloch-Pitts the sigmoid function is approximated to the

infinitely steep hard threshold, the Heaviside or sign function.
gn

fu(X)=0(X)=11f X>00r 0 if X<0 3)
In this case, the output of the any neuron is 1 or 0 indicating, or not, firing state. This
simple representation, of great consequences, is the comerstone that founds the

mathematical modelling of the artificial neural networks.

2-2-3-2 The Adopted Pr ing and Archi e
For reasons that will be clarified later, the fully connected architecture in which each
neuron is connected to all other neurons, is adopted. In reality to apply equation (2) to

the chosen network, the concept of the time step has to be applied to reflect the



dynamics of neurons firing in the network. The dynamics of the network is understood
through the dynamical change of the network pattern vector composed of all neurons
firing state. Therefore, the discrete-time approximation can well describe this activity

dynamics through the following equation:
N
V(e+1)= /[Z J,V,0)- U) i=(1,2,....N) @
J=l

In order to use the statistical mechanics analysis tools to study the firing dynamic of

artificial neural network, the pt of the hasticity is to be introduced. Little [3]

has realised this introduction by replacing the deterministic law (3) by a stochastic law

where he interpreted the transfer function f as the probability that ¥; (1+1) can take one

of the values ‘0’ or ‘1’. In reality, the hasticity introduction has also a biologi
reason that a certain degree of stochasticity is observed in biological neural networks.
Neurons may become spontaneously active, without any external stimulus, or if the
synaptic excitation does not exceed the activation threshold. This phenomenon does not,
however, appear to be a simple thermal effect, rather it is a consequence of random
emission of neuron transmitters at the synapses.

Secondly, the analogy between the neuron firing states and the upward and downward
states of the spin could be shown by the transformation:

S,=2V,-1 (i=12..N) where S,.las ¥, =0,1 )

This transformation is to make the analogy between a network of long-range interaction
spin system called spin glass network and the artificial neural network in order to
analyse it by statistical mechanics. The up or down directions limitation of the spins in

the spin glass network is just the Ising model. When the transformation (4) is replaced in



the argument of the transfer function in equation (3), it results after scaling the two
following terms: " J,S, (t)+(ZJV -U ] The first term represents the effective field
7 7

acting on the spin i by its interaction with other spins whereas the second represents the

external field resulting from the ion (4) and thresholds. Therefore, instead of the

motion equation (3), using Little concept, the following equation (5) is deduced.
S, (¢+1)=+1 with probability 1(k, (t))
where f(h,(1))=>"J,S,()+h and b =Y J, -U ®)

J J
Finally, calculating the potential energy of the neuron influenced by its local effective
magnetic field, which is &, =-S,4,, one can use the Boltzmann-factor e =¢**% to
get the normalised probability /. Finally, rewriting equation (5) that presents Little
model, results clearly and simply by the following:

. - 1

S, (+1)=£1 with probability f(h(r))= w0l ©6)

In equation (6), an important variable, which characterises the temperature of physical

Y in statistical hanics, was introduced by f. While S represents the inverse

temperature of the physical system (spins) and b of its linear depend to its
entropy (at the equilibrium), it describes the noise of the neural network system.
Therefore, the probability that the spin will be upward or downward in the first case will
be equally equal to %. However, in the second case the probability that the spin takes the
same direction as the local field, will be greater than the probability that it takes in the

opposite direction. For the extreme case where S tends to infinity the equation of



motion of the neuron tends to the following deterministi ion which is the

cornerstone of almost any neural networks models dynamics.

S,(l+l)=sgn[gJVS,(t)+h,} 1)

2-2-3-3 Hebbian Learning Rule

The Hebbian learning rule is neither a mathematical based rule, nor is a pure biological
reality. Hebb observation of the biological neural stimulates him to deduce that the only
parameter that could be the reason behind the learning and recalling capabilities of

neurons is their synaptic strengths. Therefore, he suggests that if an input pattern of the

neural network was applied to its for learning the i ion synapses for
some time then the network should remain at this firing configuration after removing it.
However, he assumed that the reason of the stability of the network at the learned
configuration is that each neuron influences the others through their updated synaptic
strength connections to preserve the learned configuration. In other words, if the given
neuron was firing when the network has learned the memory configuration and another
connected to it was also firing then the synaptic strength connecting them will get
positively stronger. Therefore, each time that one of them is firing, it will influence the
other to fire too and vice-versa and the same could be said when both of them were
quiescent. The first case of these assumptions was observed in the biological dynamics
of the synaptic strength later by Kandel [8]. The remaining state of the synaptic
dynamics, which was suggested by Hebb, is that when the two interacting neurons were
in different states. In this last case, the state of each of the interacting neurons is

inhibited through their interconnecting synaptic strengths so that each of the neurons



-induce its reverse state in the other neuron. However, based on these assumptions Hebb

formulated the following

describing the dynamical ch of the synapti

q

strengths during the learning phase of the artificial neural network:

J,—J, +A58, ®
The value of A is the learning amplitude of the association between the interacting
neurons i and j. In the general case where many configurations have to be stored in the
neural network, the learning amplitude is usually taken to be equal except in some cases
to enhance the stability of the stored pattern (see Ref [12] of Chapter 4). The concept of

stability will be developed later when dealing with the Hopfield model. However, in the

learning phase of many figurations the synapti gth late the effects

resulting from their learning, as it is shown by the following equation:
P
Jy = ).Z £, For i jand p the number of memories  (9)
=l

In the above equation, the network has been learned using the Hebbian rule from tabula
rasa where all the initial synaptic strengths are nulls. The assumption of Hebb could be
however verified in the simple case of one taught memory in the limit of vanished noise

(low temperature) by replacing (9) in (7) one can get:
N
ses)-se35566,5,0] v
=l

If s, (l)is replaced by& and A >0, then the next state of the neuron i will be& and
therefore the stored memory remains the stable state of the network. In the case of many
stored memories and a fully interconnected architecture, as it was adopted earlier in the

above equations, the Hopfield model is the best candidate to study it. The conditions that



the Hopfield model requires to be used are the fully interconnectivity of the network and

the symmetry of the interaction among the neurons.

The first dition is explained by long-range i ion of spins, which is hard to be

found in the real spins system whereas the symmetry of the interaction is reflected by

Hebbian learning rule.

Although the sy y of the i ion is in d with the Newton’s third law,
it is contrary to the biological neural network although it has some biological reality in
Kandel’ s work [8].

Consequently, the Hopfield model is neither purely biologically inspired model nor a
physical reality but a mixed model to analyse the dynamics of the artificial neural
network. In the next section, the Hopficld model and its revolutionary idea of the
computational energy is presented by analogy with the long-range interaction spin

system.

2-2-3-4 The Hopfield Model

The Hopfield model is a revolutionary combination of the physical model of the spin
system with the biological model of neural network adopting Little modelling of the
neuron and a full inter-connective network. Hebbian learning rule is adopted because of
the symmetry of the synapses despite its limited biological existence [8].

The revolutionary part of the Hopfield model is the computational energy [4] of neural

network system, which is the total energy of its equivalent spin system defined by:

E{s}=-1 T,5,5, - S A, an

1w s)
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The computation property of the system is realised, as Hopfield proposed, by the
minimisation of the energy during the neural processing. As the energy of the isolated

system gets its mini at a given confi ion, it ins at that system configuration
Y 8 Y gui

forever. However, the computation is performed by storing the solution(s) implicitly or

licitly in the synap: P ing the energy surface in the configuration space, so
that network energy is minimal at that solution (s). Note that this problem is the inverse
problem to the general goal in the physics of collective phenomena, which is to find the
equilibrium or asymptotic behaviour when the interactions are known. The solution of
the problem as well as the stimulus is given by the firing pattern of the network. The
earlier represents a centred minimum of the energy surface while the latter represents the
initial point of the energy trajectory toward the closest (hopefully the best) solution in
the configurations space. This Hopfield network can perform the task of associative
recall because it adopts the Hebbian rule as the learning rule. Moreover, whenever a
stimulus configuration (input pattern), which is closest to one of the learned memories,
is presented to the network, then the later configuration is recalled during the system
relaxation. This is well described by the fall of the system configuration, in its energy
surface, to the nearest local minima, which correspond to the nearest stored memory.
Furthermore, the network is also able, with some modifications of the Hebbian rule, to
solve the combinatorial task of the Travelling Salesman Problem (TSP) [10].
It can be shown from equation (11), by a simple signal to noise analysis, [11] that as
long as the number of stored patterns 'p' does not exceed N / (2InN), these memories are
fixed points of the dynamics at null noise (7=0). In other words, the stored uncorrelated

and unbiased patterns {.f,“ } which have been selected randomly are, with fixed 2> 0,



the minimum of the energy surface in the configurations space. As p’ increases, the

random correlations between the memories create noise, which tends to destabilise them

P q

from being minima and to reduce their basin of ion. Tk what happ
when p’ becomes proportional to ‘N’ (number of neurons) as p =aN ?

The question was answered by Amit et al., [12] who showed that the free energy of the
Hopfield network could be calculated and analysed using methods, concepts and

logies of statistical hanics of disordered sy [13]. They carried out mean

field calculation, because of the long-range interaction of the neurons, using the replica
trick [14] familiar from the theory of spin-glass. The results of the analysis are presented
in the following and the reader is referred to Geszti [15] for more details.
1. At T=0 and finite storage level e, the memories are not fixed points, but new fixed
points appear in their close neighbourhood, as long as « is bellow the critical value
a, =0.144.
2. The overlap of these fixed points with the memories determines the fraction of

retrieval errors f =l/2(1—my) where m,is the overlap between the current

configuration and the memory &* defined by m -1 &S, . At a,, one gets
W=y ¢

/ =0.01. The per ge of errors i with @and jumps discontinuously, at
a,, to 50%, corresponding to zero overlap with the learned pattern, indicating a
complete loss of memory (see Figure (4)). This forgetting catastrophe is clearly
undesirable in a realistic memory model.

3. As T increases, at a fixed value of a, the overlap with memories decreases until it

drops discontinuously at 7,, to zero. The retrieval phase below the line is
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characterised by valleys with macroscopic energy barriers surrounding the

memories. It coexists with the spin-glass phase, ch ised by exp
many local minima. This phase persists up to line 7.
The attractors, corresponding to the memories, become global energy minima only

below the line 7. at which a true thermodynamic phase transition takes place.

The above observations are presented in Figure (4). The Hopfield model turned out

however, to be profitable both for statistical physics and neural networks theory. From

the point of view of statistical hanics, the Hopfield model has several interesting

features:

1.

2.

It is another solvable and rich model of a random long-range system.
It spans a whole range of intermediate modes of behaviour, between the infinite

range Ising ferromagnet when p =1 (the Mattis Model [16]) and the Sherrington-

Kirkpatrick (SK) spin-glass [17] when @ —— .

. The existence of macroscopic free-energy valleys, which are not ground states of the

system, at least between the lines 7;.and T,,, is a novel property of this model.

Figure (4). a) Phase diagram of the Hopfield model. b) Errors percentage in the retrieval

phase. Broken line: The replica symmetric result; full line: effects of one-step replica
symmetry breaking.



The major contribution of the Hopfield model to neural networks theory was to open a

large gallery of P hni and analogies, and to direct the effort in a way,

which the putation from physical systems. The analysis of the model leads
to results and insights, which go beyond the constraints of synaptic symmetry. It turned
out to be a useful starting point for a variety of modifications, which removed some of

the constraints and drawbacks of the original formulation of the model. It is worth

ing that a layered k model, with synaptic couplings b ive
layers given by (9) can be analysed by similar methods of statistical hanics [18].
2-2-3-5 Gardner Capacity of the Network
Memory stability is an important p which ch ises neural network

recalling performance. The normalised stability of the stored memory or basin of

attraction is defined by the following quantity:

p BT
2yu?i

where j vary from 1 to N and u is the stored patterns index. In order to simplify the

an

Teulati PR

analysis it is well to have a norm of the amplitude of the

synaptic vector for all neurons and so that J?=N. Then, let define the stability
i Y

degree by a given positive parameter, which describes well the basin of attraction of a

stored memory defined as the lower limit of the stability parameter as follows:

o ST
e

>k>0 (12)



E. Gardner developed a method to calculate the storing capacity of a feedback

d ical network, independently of any particular learning algorithm. The starting

Y

point of Gardner’ s approach is to focus on the phase space of the interactions i.e. the

space sp d by the i hs J,, all i dent without any required

-4 iy

symmetry. In this space, one calculates the volume, within which a given set of »’
patterns are given a finite stability; their A} -s as defined in (11) satisfying the condition
(12) with a finite stability x . The volume within which the task is solved still depends
on the actual patterns. Averaging over a distribution of patterns that can be independent
or correlated, one obtains the volume as a function of a few parameters ¥(p, N, x). As
the load of memory grows, V shrinks until it vanishes at a given critical
p.(N,x)=Na,(x). This value defines then the capacity of the network. Without

dealing with the details for which, the reader is referred to Geszti [15] and Gardner [19]
for more clarification, the major results of the Gardner analysis are presented hereafter.

For unbiased patterns the critical storage capacity a, is given by:
- =1
a:(r)=[IDI(l+x)2J , Dr=(@r/VZz ' (13)

For the correlated patterns having the same magnetisation, which is just the average

overlap of the current configuration with the stored memories, the result is

a(mr)= { j:m)«lﬁ ‘{K Jz r-w-er ‘{H&” J’]' a

and
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1+m
7 domeyi 2

9= X+ 9m HJ (15)

1-m?

The graph shown in Figure (5) gives an overview of the variation of the critical capacity
versus the stability parameter x .

The above analysis could not be done if the approximated analogy with the physical
model of the spin system has not been formulated. Therefore, a physicist question could
be formulated in the way of suggesting other physical models exhibiting computation

like the spin-glass network model.

Figure (5). The critical storage ratio, a., as a function of the stability x

In our point of view, the proposed physical model usefulness is related to its collective
parallel-computational processing rather than to its theoretical background. In this way,
the use the real physical model to emulate the parallel collective behaviour of neural
networks is suggested as an alternative computation processor. We think that the use of
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the quantum-dot arrays might be useful in this way, as prototype structures for

parallel p ing their putation from the quantum-

mechanical processes (diffusion, relaxation...etc) [20].

2-3 Artificial Neural Networks

The emergence of artificial neural networks is a result the imitation of the biological
neural networks such as the brain and the nervous system. Right now, the biology of the
nervous system does not reveal a clear picture about its processing mechanisms.
Consequently, models have been formulated in order to understand its intelligent
mechanism. Artificial neural network is the model in which an artificial neuron is
proposed to imitate the biological counterpart representing the basic cellular unit of the
nervous system. Different models of the biological neuron of different architectures have
been proposed to perform special tasks such as associative memory, perception, self-

organisation...etc.

2-3-1 Artificial Neural Networ ks Development

In 1943 W. McCulloch and W. Pitts [21] proposed general theory of information

processing based on networks of binary switching or decisi 1 which are

somewh hemistically called * ", although they are far simpler than their real
biological counterparts. Each one of these elements i =1,2,..n can only take the output

values n, =0,1, where n, =0 represents the resting state and n, =1 the active state

(firing) of the elementary unit. In order to simulate the finite reg ive period of real

neurons, changes in the state of the network are supposed to occur in discrete time steps
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t=0,1,2...etc. The new state of a certain neural unit is determined by the influence of all

other as exp d-by a linear bination of their output values:

h6)= 2w, 0) )

he b

Here the matrix w, rep the synaptic coupling g j and the

neuron i, while 4, (1) models the total p ptic polarisation p ial at neuron i
caused by the action of all other neurons. In equation (1), &, can be considered as the
input into the neural computing unit, and »; as its output. The properties of neural
networks are completely determined by the functional relation between A; (r) and »;
(t+1). In the simplest case, the neuron is assumed to become active if its input exceeds a
certain threshold §,, which may well differ from one unit to the next. The evolution of
the network is then governed by the following rule:
n,(t+1)=0(h()-9,) @)

where G(x) is the unit step function, i.e. 8(x <1)=0and 6(x > 1)=1.

McCulloch and Pitts showed that in principle such networks could, carry out any
imaginable computation, similar to a programmable, digital computer or its
mathematical abstraction, the Turing Machine. In a certain sense, since the network
contains a “program code”, which governs the computational process, namely the
coupling matrix w, , the network differs from the traditional computer in the execution
way. This means that the steps of the program are not executed sequentially, but in
parallel within each elementary unit. One might say that the program is compensated by

the substitution of a vast number of processing elements (10'" in the human brain!) for a

single p sing unit of a conventional, sequential electronic computer. The designer of
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a McCulloch-Pitts type neural network now faces the problem of how to choose the
couplings w, so that a specific cognitive task is performed by the machine. Here the
word cognitive task is used in a generalised sense; it can mean any task requiring digital
or analogue information processing, such as the recognition of specific optical or

acoustical pattern. This question was addressed in 1961 by E. Caianiello [22], who gave

a learning algorithm that would allow the d ination of the synapti gths of a

neural network. This algorithm, called the ic equation by Caianiell

incorporates in a simple way the basic principle of Hebb’s learning rule [1]. Around

1960, F. Rosenblatt and his collab [23] extensively studied a specific type of
neural network, which they called a perceptron. They idered it as a simplified
model of the biological hani for the p ing of sensory infc ion, ie.

form, a percep ists of two sep layers of

perception. In its simp
representing input and output layer, respectively, as illustrated in Figure (6). The
neurons in the output layer receive synaptic signals from those of the input layer, but not
vice versa, and the neurons within one layer do not communicate with each other. The
flow of information is thus strictly directional; hence, one speaks of a feed-forward

network.

Rosenblatt’ s group introduced an iterative algorithm for constructing the synaptic

couplings w, such that a specific input pattem is transformed into the desired output

pattern, and even succeeding in proving its convergence [24]. However, M. Minsky and
S. Papert [25) pointed out few years later that this proof applies only for to those

problems, which can, in principle be solved by a perceptron.
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Input Layer

Output Layer

Figure (6). The simplest form, of the percep hi

The fact, which made matter worse, was that they showed the existence of very simple
problems, which cannot be solved by any such two-layered perceptron. The most
notorious of these is the exclusive-OR (XOR) logic gate. The XOR logic gate requires
two input neurons to be connected with a single output neuron in such a way that the
output unit is activated, if and only if, one of the input units is active. The XOR logic
gate is a standard problem easily solved by computer simulation and thus the result of
Minsky and Papert represented a severe blow to the perceptron concept. This problem
was latter solved by the introduction of a practical algorithm (backpropagation rule) for

the construction of the synaptic strengths (interconnections)w, of such generalised

perceptrons [26].

Another very fruitful development began when W. Little [3] pointed out the similarity
between a neural network of the type proposed by McCulloch and Pitts and systems of
elementary magnetic moments or spins (see Figure (7)).

In these systems, called Ising models, the spin s; at each lattice site i can take only two
different orientations, up or down, denoted by s, = +1 (up) and s, = -1 (down). The

analogy to a neural network is realised by identifying each spin with a neuron and



associating the upward orientation s, = +1 with the active state n, = 1 and the downward

orientation s; = -1 with the resting state n; = 0.

Figure (7). The Little analogy between the spins system and the digital system

These ideas were further developed by Little and G. Shaow [27] and later by J. Hopfield
[29] who studied how such a neural network or spin system can store and retrieve
information. The Little and Hopfield models differ in the manner in which the state of
the system is updated. In Little’ s model all neurons (spins) are updated synchronously

dated

according to the law (1), wh the are up ially one at a time,

either in certain fixed order or randomly, in the Hopfield model. Sequential updating has

a considerable advantage when the network is simulated on a ional digital

and for building the th ical analysis of the properties of the network. On

P

the other hand, it holds the essential conceptual disadvantage that the basic feature of
neural networks, namely the simultaneous operation of a large number of parallel units,
is given up. Neurons in the human brain surely do not operate sequentially, this being
precisely the reason for the brain’ s superiority in complex tasks to even the fastest

exciting electronic computer.



The analogy with the spin systems became especially fruitful owing to the advances in
the understanding of the thermodynamic properties of disordered systems of spins, the
so-called spin glasses, achieved over the past decade. In order to apply these results to
neural networks it is necessary to replace the deterministic law (2) by a stochastic law.
In the suggested stochastic law, the value of n; (1+7) is assigned according to a
probabilistic function depending on the intensity of the synaptic input h. This
probability function contains a parameter T that plays the role of a “temperature”.

H , T does not rep the physical temperature of a biological neural network,

but a formal pt designed to introd hasticity. It reflects the disorder of the

system through its relation to the entropy of the system by the relation S =ln(Z)/ T
where Z is the partition function of the system of spin and S its entropy. Thus, the
temperature is introduced into the network in order to allow the application of the
powerful techniques of statistical thermodynamics. In the limit of the vanishing
temperature, the deterministic McCulloch-Pitts model is recovered. Studies have shown
that stochastic evolution can render the network less susceptible to dynamic instabilities
and may thus improve the overall quality of its operation. In the next chapter, the idea of
how the introduction of physics through statistical mechanics has played this fruitful role
in developing and understanding the behaviour of artificial neural networks system
mainly the feedback networks, will be developed further. In recent years, the interest in
layered, feed-forward networks (perceptrons) has been revived because of the need to
apply this architecture in the image and sound processing as it was found being applied
by the biological processing. This development was initiated by the rediscovery of an

efficient algorithm for the determination of the synaptic coupling strengths for multi-
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layered networks with hidden layers (see Figure (8)). The power of his method, initially
suggested by Werbos [26] and now known as error back-propagation, was recognised
around 1985 by several groups of scientists ([28], [29]). This learning algorithm is based
on a simple but very effective principle: the synaptic strengths w, are modified
iteratively such that the output signal differs as little as possible from the desired one.

This is achieved by the application of gradient method, which yields the required

modifications & . Since the operation of the network corresponds to a highly non-
linear mapping between the input and the output (the step function in (1) is non-linear)

the method must be applied many times until convergence (required error) is reached.

Input layer Hidden layer  Output layer

Figure (8). A feed-forward network with one internal “hidden” layer of neurons

Error back-propagation is a particular example of a much larger class of learning
algorithms, which are classified as supervised learning, because at each step the network
is adjusted by comparing the actual output with the desired output. Not only are such
algorithms most probably not implemented in biological neural networks, but also they
suffer because they are applicable only when the desired output is known in detail. For
this reason also other concepts of learning (the synaptic dynamics), are intensively

studied, such as strategies based on reward and penalty, evolution and selection...etc.
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2-4 Bidirectional Associative M y

Bidirectional Associative Memory BAM is a neural network proposed for the
implementation of the Parallel Learning-Processing PLP strategy. The origin of this
ANN is presented as well as its general characteristic and its relation with the Hopfield
network. The PLP neuron based BAM is suggested to solve the communication

problems between any two digital systems.

2-4-1 BAM Definition

The BAM network belongs to the family of heter iative dynamic iative
memory HDAM proposed first time by Okajima [30] in 1987. A descriptive block
diagram of this kind of associative memory is shown in Figure (9).

It consists of two processing paths that form a closed loop. The first processing path
computes the output vector y € {- 1,+1}L from an input vector x € {~1,+1}" according to
the parallel updating rule

y=F[Wx] m
or its serial (asynchronous) version, where one and only one unit updates its state at a

given time. Here, F is usually the sign activation operator. Similarly, the second

ing path p a vector x ding to the following equation:

x=Fiy] @
or its serial version.
The vector y in equation (2) is the same vector generated by equation (1). The HDAM

can be operated in either parallel or serial retrieval modes.



iyt
L

Figure (9). Representative Diagram of Heteroassociative Memory Dynamics

In the parallel mode, the HDAM starts from initial state x (0) (v (0)), computes its state y

x) (x(y) ding to equation (1) (equation (2)). Then, it updates the layer x (y) (v (x))

state ding to ion (2) (equation (1)). This process is iterated until state x (and

q

equivalently y) ceases to change. On the other hand, in the serial-update mode, only one
randomly chosen component of the state x or y is updated at a given time.

Various methods have been proposed for storing a set of heteroassociations {x', > },
k =12..,m, in the HDAM. In most of these methods, the interconnection matrices w,
and W, are computed independently by requiring that all one-pass associations
x* ——y* and y* —— x*, respectively, are perfectly stored. It assumed that the set
of associations to be stored forms a one-to-one mapping; otherwise, perfect storage

b i ible. E; les of such HDAM recording methods include the use of

projection recording ([31], [32]) and Household: fc ion-based ding [33]).

These methods require the linear independence of the vectors x* (also y*) for which a
capacity of m = min(n,L) is achievable. One drawback of these techniques, though, is

that they do not guarantee the stability of the HDAM: i.e., convergence to spurious
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cycles is possible. Empirical results [32] show that parallel updating of the projection-
recorded HDAMs exhibit significant oscillatory behaviour only at memory loading
levels close to the HDAM capacity.

Kosko ([34], [35]) independently proposed a h iative memory with the

architecture of the HDAM but with the restriction ;" =W, = W . This kind of memory
is known as the BAM. The interesting feature of the BAM is its stability for any choice
of the real-valued interconnecting matrix W and for both serial and parallel retrieval
modes. Starting from the BAM’ s bounded Liapunov energy function it can be shown
the following property:

E(x,y)=—%x7Wy-%erx ='%XTW"Z'ZZIWVI A3)
(]

This i ing d ics is ind dent of the updating method. In the serial or parallel

P

state updating the energy, E (x, y) tends to decreases (Appendix A). The BAM stability
can be proved observing that a BAM can be converted to a discrete autoassociative
memory DAM (Discrete Hopfield DAM) with the state vectors x'=[x' y'] and

interconnection matrix W' given by:

i 4
oo @

Now, since W'is a symmetric zero-diagonal matrix, the autoassociative DAM is stable if
serial updating is adopted [36]. Therefore, the serially updated BAM is stable.

This equivalence property could be used to show the stability of the parallel-updated
BAM. Consequently, BAM always converges to a local minimum of its energy function

defined in equation (3). It can be shown [37] that these local minima include all those
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which correspond to associations {x‘, y"} which are successfully loaded into the BAM
(i.e., associations which are equilibrium of the BAM dynamics.)

The most simple storage recipe for storing the associations as BAM equilibrium points is
the correlation-recording recipe of the Hebbian rule. This recipe guarantees the BAM
requirement that the forward path and backward path interconnection matrices #, and

W, are the transpose of each other, since

W, =2 FEY o and W, =i(x‘)’ ¥ ®)

k=l k=]
However, some serious drawbacks of using the correlation recording recipe are low
capacity and poor associative retrievals; when m random associations are stored in a
correlation-reccrded BAM, the condition m << min(7,L) must be satisfied if good
associative performance is desired [38]. Heuristics for improving the performance of

correlation-recorded BAMs have been demonstrated by Wang et al [39].

2-4-2 Comparison B BAM and Hopfield Model

From the above BAM network description and recalling the Hopfield network, the major
differences between the two networks could be summarised in the following points.

At the first sight, BAM needs a smaller correlation matrix to the Hopfield model because

of the limited i ions b the For N impl d in the

Hopfield network N of synapses are needed. If this number is distributed to P neurons
connected to (N-P) neurons in the BAM network only N x (N-P) interconnections are
needed, which are less ' than N°. Another advantage is that BAM has no oscillatory

states because of its asynchronous version of the synchronous Hopfield model (one

" this is trivial because A° > (N-P) x P ¢ (N-PY' + N x P)> 0 and N, P are a positive numbers
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updated layer at a time). This could be verified by the fact that AE <0 if just one-bit
flips (see Appendix A). Finally, BAM is relatively easy to implement comparing with
the Hopfield network, in both of the theoretical and hardware implementation in which
Kosko [36] has suggested an optical method for its implementation.

Beside these advantages, BAM also suffers from many disadvantages such as its

restricted capability to imp only one-t ing. Another, but a common

disadvantage of the Hebbian rule based networks, is its low capacity. Despite this
property, BAM has larger capacity compared to the Hopfield network. It depends on the
number of neurons of the minimum layer for the BAM while it is 14% of the total

number of neurons for the Hopfield network (see Appendix A).

2-4-3 Other Models of the BAM

There have been several models of the BAM based on the different aspect of the
artificial neuron, such as the transfer function, synaptic strength and the threshold.
However, the continuous BAM suggested first time by Kosko ([36], [37]), suppose that
the transfer function is a sigmoidal function. Besides, Kosko [36) proposed other model
called the adaptive BAM by assuming the dynamic changes of the synapses. In this

model, the synaptic change also during the processing.
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