Chapter 3
Very Large Scale Integration

Implementations of Artificial Neural Networks
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3-1 Introduction

The new approach for information processing based on the implementation and

execution of neural algorithms is called neur puting. N puting is the
technological discipline concemned with parallel, distributed adaptive information-
processing systems that develop information-processing capabilities for an information
environment.

Conventional computers are based on the Von Neumann approach in which one
instruction is executed at a time. The Von Neumann approach has been extended with

the introduction of pipelining, array p ing, and ip ing Single-Instruction-

PIp

Multiple-Data (SIMD) and Multiple-Instruction-Multiple-Data (MIMD) architectures
based Arithmetic Logic Units (ALU) to design fast parallel processors.

Parallel processors are also limited in their ability to solve real-time problems such as
pattern recognition, speech recognition, optimisation...etc. Therefore, parallel network
based on intelligent processors is proposed and thus a mimic of the human brain neural

network (Neurocomputer) is in fact an ultimate alternative.

3-2 ANN in the Context of C omputing Generation

There are some claims that ANNs represent the sixth generation in computing. The first

to the fourth generations were ct ised by the hard advances (from the

electromechanical relays to VLSI), and generation 5 was Artificial Intelligence Al The
assertion that ANNs represent a distinct computer generation is perhaps both arguable
and premature. It is probably fair to say, however, that there is currently little consensus
on how to exploit VLSI and Ultra Large-Scale Integration (ULSI) technology to achieve

massively parallel ANN implementations.



We reiterate the remark that nature has already solved the scaling problem in
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The entire field of ANN implementations, insofar as large-scale networks are concerned,

is about 10 years old. At this time, many alternative implementation approaches are

ilable, including optical, biological wer e, and el

s

Specifically, efforts to achieve both ical simulator and dedicated hard may be

subdivided into three major objects:

1. Use of standard chips to design

and cop hi (13, [2]).

2. Use of supercomputers ([3], [4]).

3. Design of special-purpose neurochips, which may be analogue, digital or hybrid.
Neurocomputer building is typically very expensive, in terms of development time and
required resources. Furthermore, the market for such devices is very unclear, especially

in light of the continual evolution of new devices and neural architectures.

3-3 Artificial Neural Networks VLSI Design

The resp and the ch istics of present models of artificial neural nets are

primarily investigated by simulation on vector computers, workstations, special

| drawback of such simul is that

coprocessors or transputer arrays. The fund.
the spatio-temporal parallelism in the processing of information that is inherent to the

neural net is lost entirely or partly. Therefore, the computing time of the simulated net

pecially for large iations of grows to such orders of magnitude that a
speedy acquisition of neural known-how is hindered or made impossible.
Figure (1) shows the performance obtainable with available commercially simulators [5]

in term of implemented weights and executed (learned or processed) weights per second.



This must be conft d with the application needs. It b bvious that today’s

hardware capabilities are limiting the development of neural network research.
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Figure (1). Synapse updating speedup of some commercial neuro-chips

An appreciable reduction in computing time and thus the handling of largish task or

those that are to be d in real-time b possible with specially designed neural
hardware. Apart from the shortest possible computing time, neural hardware offers a
very much smaller structural volume than can be implemented with simulators for the
same task. This is especially important when neural hardware is to be incorporated in

terminals for man-machine communication or mobile robotics.

3-4 VLSI Advantages

Depending on the application under consideration, the user would tell whether his
problem is accessible by simulation on conventional computers or not. If yes, the

application task under consideration can be well defined. Therefore, the user will specify



the kind of data format and the degree of weight resolution, the size and type of the
network and the processing speed for the recall mode. If the real-time requirement
cannot be satisfied by the software implementation, it makes sense to think about

designing special hard . B the weights are computable in advance, there is no

extra circuitry other than for programmable or hard-wired weights and discrimination.

The designer task in this case is impl ing the needed synapses, so that the pattern

storage capacity increases with the number of impl d and the computing

time reduces linearly with the number of implemented synapses. Considering just one

application area, namely signal p ing, it has been d d that the number of
synapses required is of an order that can be implemented on a single chip with today’s
technology ([6], [7]). For small-scale ' applications, there is thus the possibility of
specific application neural chips with programmable or fixed weights (see Figure (2)).

The learning algorithm, of an application that is accessible to the simulation, only has to

be considered in hardware terms if there is a relevant real-time requi The latter is
imaginable, for instance if the learnt information valid for a short time and new learning
is repeatedly. Obviously, supporting the learning task will be possible at the expense of
the number of synapses implemented, and it has to be checked whether single-chip
integration will be possible at all. Wafer Scale integration may be turn out to provide the
integration potential for computing and storing synaptic weights and intermediate results
produced by the learning algorithm ([8], [9]). An alternative popular proposal is to

distribute the neural net implementation plus the learning algorithm over several chips

and cascade them.

"In terms of the number of synapses required.
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Figure (2). Specific neural chips with progi ble or fixed weigh

Neural nets for applications like vision or speech, on the other hand, overtax the single-
chip integration potential of present technology as well as that of the future 0.3 wm
technology by whole orders of magnitude (see Figure (1)). Particularly the weights will
have to be stored off-chip. The size of such a net will not permit simulation (especially
of the learning phase) within a reasonable period and therefore the weights cannot be
determined by simulation. This means that little or no engineering expertise has been

accumulated for these large applicati C ly, the VLSI archi must be

designed for universal lation of neural network structures and speedy learning. VLSI

12

architectures of this type will obviously look different from those considered in small-

scale applications.

3-5 Single-Chip Integration

Single-chip integration of neural net means on-chip storage of the weights (not more
than few ten thousands of synapses today) [6]. Consequently, the amount of information

processed in a neural chip will be limited in size. This means in turn that the application
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must match the impl i ial of the technology. Fortunately, the learning for

P

neural nets that can still be integrated on a chip can be performed on conventional

with ble time expendi Thereft the lication task under

consideration can be well defined and the hardware matched optimally to the task.
On one hand, on-chip storage of weights offers an easy way to achieve real-time action

h

by neural networks, since there is no pad-bandwidth problem for the weights. On the

other hand, VLSI technology faces the i ion problem, irrespective of which

design style (analogue or digital) or which technology is used ([10], [11]). If several
thousands of weights were to be connected physically to a neuron and some thousands
neurons to be implemented, the wiring area would grow drastically. It can even grow to
such orders that the delay on the wires tends to exceed the latency time of the functional
block representing a neuron.

In principle there are two ways to overcome the interconnection problem: firstly, by
reducing the technological structure size, and secondly, by architectural means. The first
way dominated the early era of neural hardware design was by H. P. Graph [12], C. A.

Mead [13), and A. P. Thakkoor [14]. Nowadays, the second course is followed

£
p

bly, since archi is the cheapest. This method has taken the most interest not

only because of its expense only but also because of the availability of the array
architectures such as the SIMD and MIMD on the dedicated parallel computer [15]. As a
rule, a designer should check first for the required processing time (real-time conditions)

of the lication under ideration. Then, think out to what extent it is possible to

form the ideal massive parallel networking of a neural net. Together with the decision of

as to whether the analogue or the digital signal processing concepts is to be applied and
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the selection of the type of technology to be impl d, will result an initial

architecture draft. Instead of reviewing archi one can lude that the

technology and the signal p ing infl the design of the architecture

whatever it may look like.

3-5-1 Anal Design Impl

This kind of impl ion is idered be the closest implementation to the

biological networks because of the signals continuity in both systems. Another property

loited in the impl ion of anal ANN is the temporal integration of the

input signals. The biological cell, which deals mostly with the integration of the input,

signals, i.e., its functionality is based on frequency (pulse stream) of incoming signals.

An ) .Y i hereft is the best didate to mimic this behaviour

([16], [17], [18]), based on standard (Complementary Metal Oxide Semiconductor)
CMOS technology. Other attempts were investigated by exploiting the relation between
the current and the voltage in the CMOS device sub-threshold region ([19], [20]).

Particularly for anal lisation, the hasis of circuit design is on the exploitation

of the functional properties inh in the el of the basic circuit [21]. Generally

the architectural draft needed for the analogue implementation of a neural net

on ing the synaptic weighting, the neural ignition response

(discriminator function) and the controlling of data input and output. The important

is the of the connection element, because the cell size mainly

determines the overall area of the network.



Furthermore, the analogue implementations have the capability of processing more than

1 bit per transistor. If this benefit is to made use of, h , the following p

')

have to be mastered:

1.

Non-volatile storage of analogue weights provides very high synaptic density, but

Hlal"

may not be sufficiently often p

. The design of a synapse, the size of a neural network and the degree of analogue

resolution are dependent on each other [22].

. A major design problem with analogue circuits is the relation of accuracy to chip

area. The more precisely one wishes to control the matching of the analogue
components, the more chip area is needed. An analogue depth of not more than eight

bit is recommendable. Crosstalk and susceptibility coupled in interference make

special p i y for anal signal p ing.

. The minimal chip area is also influenced by many factors like noise and current

consumption. Low current consumption calls for high-valued resistors in resistor-
capacity circuitry. Low noise creates certain limits for minimal transistor Q surfaces
and capacitors; this applies to switch-capacitor as well as to resistor-capacitor
technique.

d 3

The d d clock feed-through and pro P D

P P

can be reduced in analogue circuits so that they no longer interfere, but this is done

at the expense of circuit complexity and has an effect on the chip area.

? Programmable here means the ability. of changing the synaptic strength values known as Online
Learning. For further reading see the book of U. Ramacher and R. Ruckert, VLSI Design of Neural
Networks, Kluwer Academic Publishers 1991, 3" chapter, Analog storage of adjustable synaptic weights,
by E. Vittoz et al.
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6. With future 0.3 um transistor channel length. a lower supply voltage than 5 I must
be expected. so questions of low-voltage design have to be considered. Accurate
transistor modelling. innovative circuit techniques and design cleverness will be
significant here like in the case above.

7. The limited precision in grading the weights (realised, for example, in the form of
ohmic resistance or switch capacitors [23]) means, on one hand limited computing
accuracy for an analogue implementation. Therefore, this influences the number and
complexity of patterns that can be reliably processed with an analogue net. This
applies equally on the selection of the discriminator: the computing accuracy of the
entire analogue chip has to be considered.

8. The limited precision in processing information by the analogue neural net means,
on the other hand. that the information must be encoded in a redundant or fuzzy
fashion. i.e. only as sharply defined as is necessary for secure recognition.

9. If a learning algorithm is to be implemented in analogue circuitry, it is necessary to
ensure a fortiori whether the intended application can at all be learnt.

10. Therefore. the implementation engineer has to characterise the tasks of pattern

processing in which deviations of the actual weight values from the pre-computed
ones can be tolerated and where it is possible to make do. The latter poses the least
problems to the analogue designer.
In the analogue implementation of neural nets. it is consequently a matter of bringing
together the application-oriented problem analysis and the circuit architecture: this is the

only way to determine the application spectrum that can be implemented with analogue



hardware. Isolated definition of the effort for the analogue multiplication would be as

inappropriate on the chip designer part as the weights determination on the user part.

3-5-2 Digital Design Implemen tation

A guiding principle in implementing neural algorithms is that if a particular network
suggests a certain structure for its solution. an efficient computer implementation may be
one that reflects that structure. For example, if the processing algorithm is based on the
calculation of the local unit properties, a logical problem decomposition and associated
architecture might be a parallel computer architecture in which each processing element
independently processes neighbourhood unit data. For implementing a general network,
one has to look for general techniques, which can support their inquiries. In the strategy
of the digital implementation of ANN. one can divide the multitude of the currently
implemented circuits under two major implementation strategies:

1. The architectural-operational implementations.

2. The enhancing capabilities implementations.

The first category concerns the different ways of connecting the neurons in their
operational processing methodology. The interconnections in the implemented circuits
are not the same as for the ANN but they are an artificial way 1o imitate the later
parallelism. Therefore. the meaning of the parallelism in the implementation of neural
networks is to be clearly defined in all levels. The notion of parallelism has two major
definitions: algorithmic parallelism and data parallelism. Algorithmic Parallelism (AP)
involves decomposition of an operation or algorithm into component operations. which
may be executed in parallel. S. Y. Kung [24] has shown that most neural models are

parallelizable even with architectures such as the back-propagation. The  major



consequence of paralleling the ANN based on a thorough understanding of explicit and
inherent parallelism in neural models is the design-effective and real-time processing
hardware. Data parallelism (DP) (or also physical architecture parallelism) involves
decomposing input data into partitions over which the operations may be carried out
independently in parallel fashion especially when these operations are repeated many
times. Most neural algorithms involve primarily those operations that are repetitive and

regular such as iplication and i For these class or algorithms, an

attractive and cost-effective architectural choice is the array krace::ors‘ which use
mostly local interconnection network. This paves the way for massively parallel
processing that represents the most viable future solution to real-time neural information
processing. Systolic arrays (see Figure (3)) are the most widely used array processor
architecture beside their derivatives such as the toroidal and the ring architectures for the

implementation of digital ANN.
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Figure (3). Basic configuration of systolic arrays

Systolic architectures ([25], [26]) are a class of pipelined array architectures. They are
computing networks possessing the ability to parallel the computation in the most
economical and fast way. According to Kung and Leiserson [25], “a systolic system is a
network of processing elements (PE) which rhythmically compute and pass data through

the system™. For example. it can be shown that for some basic inner product PE can be



locally connected together to perform digital filtering, matrix multiplication, and other
related operations. Therefore, the digital implementation of artificial neural networks

using this techniq ists in replacing the prc ing el PE by digital neurons.

The systolic array features the important properties of modularity, expandability (or

extendibility), regularity, local interconnection, a high degree of pipelining, and highly

synchronised multi ing. The data mo in systolic array architecture are

P!

often described in terms of the snapshots of the activities. A digital implementation of
ANN using the linear systolic array adapted for both the backpropagation and the
counter propagation architectures has been implemented by Marchesi et al [27]. Another
but more exciting implementation of artificial neural network using the systolic array
architecture is the work of S. Eun et al., [28]. They implemented systolic array

s

and demc d that it can overcome the divergence of the parallel

updating of the Hopfield network without loosing the speedup of the architecture. In this
implementation, the neurons are not updated in parallel but they do the calculations by
exploiting the power of this architecture in which they are serially updated avoiding the

divergence of the system. It was proved that this architecture could achieve a linear

speedup as the number of p is increased. The two-di ional systolic arrays, a
kind processor array architectures, have been used to implement the Hopfield network
[4]. Other systolic derivative architecture, which is more automatic and dynamic, is the
ring systolic array also called the toroidal architecture. The toroidal implementation of
artificial neural network was suggested by S. Jones et al.. [30] to emulate a fully
connected feedback neural network as well as a feed-forward neural network (see Figure

(4)). The synaptic strengths are stored on shift register which presents successively the

02



corresponding synaptic strength to the input signal that is also stored on a shift register.
The basis of operation revolves around the vertical axis, whereas the weights associated
with each state revolve around the horizontal axis. Figure (5) presents a schematic
diagram of the toroidal architecture of a feed-forward network composed of three layers

using the toroidal architecture.
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Figure (4). Toroidal archi to late four fully inter d neurons.

In brief, the array processor architectures deeply benefited neural networks digital
implementation because of their important common property of Parallelism.

Another fact that raised the interest on the digital implementation of ANN is the great
progress achieved by the integration technologies such as the VLSI and the ULSI (10°
transistor on a chip). Therefore, exploiting the advanced power of the integration
technologies and the advanced architectures of the array processor will certainly enable
further digital implementation of more complex ANN.
The above-mentioned properties such as the reconfigurability and the expandability are

cornerstones of almost all of the architectural implementations for constructing a
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e of any | algorithm. In this way, Raggad and Jin

[31] implementation is worthy to be mentioned. They proposed a Basic Neural Unit

(BNU) to be the foundation of reconfigurable architecture for constructing any ANN.
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Figure (5). The toroidal architecture emulating three layer feed forward NN
Layer ‘0’ = Bias Node. Layer ‘1° = Input Buffer Layer.
Layer 2’ = Hidden Layer. Layer ‘3’ = Output Layer.

Beside the architectural criterion of the implementation of ANN. the internal structure of

the basic neuron adapted for its different phases (learning and processing) is the other

o4



strategy characterising any digital implementation attempt. The goal looked through this
strategy is the hardware and timing cost saving when implementing the different neural

operations. Particularly, the multiplication between the inputs and their corresponding

weights is considered the most h ing and slow operational part of the
neuron circuitry. This problem was considered by many authors replacing the classical
digital multiplication by other techniques. An alternative method used in the digital filter

design ists of reduci Itiplications cost, using integer weights whose values are

power of 2 or sums of power-of-two. This digital technique was originally proposed by

Y. C. Lim and B. Liu [32] and exploited by B. A. White et al ‘[33] in implementing the

multiplication operations. This method ists of substituting the multiplications with
simple shifts or shift-and-add operations, which are faster and require less hardware. The

previous work of Y. C. Lim and B. Liu were also exploited by M. Marchesi et al [34] to

implement a digital feed-forward neural k. Consequently, the impl d chip
presented the two major goal of the implementation of the ANN, saving the chip area

time in agr with a similarly previous work [35]. Despite these

and p
results, this implementation has some restriction because of the limited range of values
used in processing and because of the sensitivity of the learning rule (backpropagation).
These disadvantages restrict this implementation for digital signal processing of wide-
band signals, non-linear channel equalisation and others.

The scalability and the power dissipation are important parameters influencing the
performances of the digital ANN implementation. Furthermore, because of the

fragmentation of the real problems into many processors, the need of large-scale

pl ion of p i fons is idable. The impl ion cc
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huge number of neurons distributed in a parallel architecture to achieve best timing
performance has to reduce power dissipation. This increase in the number of processing
elements affects certainly the power dissipation of the system (chip) and probably the

processing time too. Therefi lutions were i igated to overcome this problem.

Firstly, the internal structure of the neuron is to be changed to reduce the internal
hardware cost of the neuron. This is achieved by two ways. The first is to reduce the

hard cost of the | arithmetic operations mainly the multiplication. The other

hard:

way is to use | general archi ducing cost and emulating most

of the ANN functionalities. Second alternative is the use of more economical
technologies, namely the CMOS technology. Under this implementation philosophy
comes the work of K. Uchimura et al [36] trying to implement high-speed digital neural
network chip in which they take profit from the two mentioned ways of implementation
visions. In their attempts, they implement the Polyhedric Discrimination Neuron (PDN),
which is a vector distance type based on the Radial-Basis Function (RBF) with a slight

difference concerning the di: The sch ic of the PDN model basic

unit and its architecture are shown in Figure (6) and Figure (7). It is verified [37] that the
RBF can perform similar tasks like the feed-forward network such as classification and

generalisation.

Figure (6). Schematic of single PDN neuron.
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H , the vector-di: neuron fe such as fewer interconnections or

additional leaming have most important characteristics for large-scale neural networks.

Figure (7). Architecture Schematic of the PDN network model.

Furthermore, the simplicity of the PDN model and future VLSI technologies will make

q

possible large-scale neural network chip. The power dissipation of the above

implementation is increasing steadily with increasing neuron density. Figure (8) shows

how much it has i d with the miniaturisation of conventional digital chips.
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Figure (8). Chip power dissipation versus CMOS process technology.
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The current parallel processing chips are fast approaching the upper limit of allowable

power dissipation. Therefore, low-power technol gy is needed to implement large-scale

implementation such as that for ANN. In order to make the first steps in the low-power
technology the authors of the current implementation proposed the use of architecture
implementation for this purpose. However, they developed the Low-power Chain-
Reaction (LCR) architecture for the PDN network. The LCR architecture consists of

three circuit techniques. The first is an ic-stop technique for arithmetic circuits.

In the PDN model, the summing operation (see Figure (9)) is stopped at the end of a
transient region that is in the transfer function curve of the neuron. The second technique

is a fully implemented digital synapse (see Figure (10)).

Jb Initial Value

Figure (9). Primitive LCR Operating Diagram.

All synapse units have a calculating circuit and embedded weight memories to cut down
the power dissipation in memory access, bus drivers, and register operation. The third
technique is a self-controlled operation without internal clocks. Automatic-stop

operation is controlled by the carry signals of the summing adders using control gates on
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signal paths. With this method, there is no problem with fast internal clock generation
and synchronisation. The authors concluded that the use of the PDN model and the LCR
architecture could make possible large-scale neural networks of 10,000 neurons or more,

b a 10,000 system dissi only 54 W while maintaining high-speed

performance.

ol

Synapse unit circuits

Figure (10). Circuit schematic of the synapse units.

Figure (11) shows how the LCR architecture based on the PDN neuron can reduce the
power dissipation of the chip comparing with conventional chips.
Finally, another simplification of the hardware is mentioned in the same sense of

the impl ion coast, which consists of reducing the size of the

summation of the product circuit.

This technique consists of using the Fast Fourier Transform for the precedent operation
but restricted to the backpropagation algorithm. This method combined with the
distributed arithmetic technique have been found to be a promising technique tools [38]

not only to minimise the hardware coast but also as a solution for many real-time pattern
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recognition problems.

Figure (11). Reduction ratio of the chip power dissipation by the LCR archi

Architectural strategy in the algorithmic sense > combined with the parallel pipelined

array processors in the hardware sense will rep: the ial techniques for future
ANN impl i The ulti objective is the spread of the ANN circuits as
powerful intelligent real-time p: by reducing the power dissipation of the
impl ions and improving their timing, and hence the CMOS technology will be

idable. An i ing impl ion in the same sense as the above philosophy

and goals worthy to be mentioned was realised in the work of T. Watanaba and his
group [39]. Finally, the most important observation that may and deserve to be the
reason of the power of the biological neural networks is the importance of the
architecture. This major factor is in fact a twice-important factor of the ANN hardware

power dissipation and timing.

1 ion b of its infl on the h

Any improvement in this factor will certainly play the major role in the future

implemented ANN circuits.

* In the sense of processing distribution progress
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