Chapter 6

VHDL Implementation of the PLPN-Based

Bidirectional Associative Memory

6-1 VysicHDL Hardware Description Language
6-1-1 Definition

VHDL [1] is the acronym for Vysic HDL standing for Very High Speed Integrated

Circuits H: Description 1 ge. This | ge was proposed to model digital
systems at many levels of abstraction, ranging from the algorithmic level to the gate
level. The complexity of a digital system being modelled could vary from that of a

simple gate to a complete digital electronic system, or anything in between. The digital

system can also be described hi hically including explicitly its timing in the same
description. The VHDL 1 can be regarded as an i d 1 ion of the
following languages:

> sequential language

> concurrent language

> netlist language

> timing specifications

> waveform generation language
Therefore, the language enables the designer to express the concurrent or sequential
behaviour of a digital system with or without timing. It also allows the designer to model
the system as an interconnection of components. Test waveforms can also be generated
using the same constructs. All the above constructs may be combined to provide a
comprehensive description of the system in a single model description.
The language defines not only the syntax but also defines very clear simulation
semantics for each language constructs. Therefore, models written in this language can

be verified using a VHDL simulator. It is a strongly typed language and is often verbose

99

to write. It inherits many of its features, especially the concurrent language part, from

the ADA p ing 1 B VHDL provides an extensive range of

modelling capabilities, it is often difficult to understand. Fortunately, it is possible to
quickly assimilate a core subset of the language that is both easy and simple to

understand without learning the structure of the most complex chips.

6-1-2 VHDL Standardisation History
The requirements for the language were first generated in 1981 under the Vsic program.
In this program, several of the US companies were involved in designing Vysic chips for

the Department of Defence (DoD). At that time, most of the companies were using

different hard description 1 to describe and develop their integrated
circuits. Consequently, different vendors could not effectively exchange designs with
one another. In addition, different vendors provided DoD with descriptions of their chips
in different hardware description languages. Reprocurement and reuse was also a big
issue. Thus, a need for a standardised hardware description language for the design,
documentation, and verification of the digital systems was generated.

A team of three companies, IBM, Texas Instruments, and Intermetrics, were first
awarded the contract by the DoD to develop a version of the language in 1983. Version
7.2 of VHDL was developed and released to the public in 1985. After the release of

version 7.2, there was an increasing need to make the language an industry-wide

dard. C quently, the | was transferred to the IEEE for the standardisation
in 1986. After a sub ial enh to the | made by a team of industry,
university, and DoD rep ives, the 1 was dardised by the IEEE in

December 1987; this version of the language was known as the IEEE Std 1076-1987.

100

The official language description appears in the IEEE standard VHDL Language
Reference Manual, available from the IEEE. The language has also been recognised as

an American National Standards Instii (ANSI) dard. A ding to IEEE rules,

IEEE standard has to be reballoted every five years so that it may remain a standard.

C quently, the 1 was upgraded with new features, the syntax of many
constructs was made better uniform, and many ambiguities present in the 1987 version
of the language were resolved. This new version of the language is known as the IEEE
Std 1076-1993.

The department of Defence, since September 1988, requires all its digital Application-
Specific Integrated Circuit (ASIC) suppliers to deliver VHDL descriptions of the ASICs
and their sub-components, at both the behavioural and structural levels. Test benches
that are used to validate the ASIC chip at all levels in its hierarchy must also be
delivered in VHDL. This set of government requirements is described in Military
Standard 454. Since 1987, there has been a great need for a standard package to aid in
model interoperability. This was because different CAE (computer-aided engineering)
vendors supported different packages on their systems, causing a major model
interoperability problem. Some of the logic values used were 46-value logic, 7-value
logic, 4-value logic, and so on. A committee was set up to standardise such a package.
The outcome of this committee was the development of a 9-value logic package. This

package, called STD_LOGIC_1164, was then the balloted and approved to become an

IEEE standard, labelled IEEE Std1164-1993.

6-1-3 VHDL Capabilities

The followings are the major capabilities that the language provides along with features

101

that differentiates it from other hardware description languages:
> The language can be used as an exchange medium between chip vendors and
CAD tool users. Different chip vendors can provide VHDL descriptions of their

to system desi CAD tool users can use it to capture the behaviour

P

of the design at a high level of ab. ion, for functional simulati

> The language can also be used as a communication medium between different

CAD and CAE tools. For ple, a sch ic capture program may be used to

generate a VHDL description for the design, which can be used as input to a
simulation program.
» The language supports hierarchy; that is, a digital system can be modelled as a

set of i d p each p t, in turn, can be modelled as a set

of inter d sub-comp

» The language supports flexible design methodologies: top-down, bottom-up, or

mixed.
» Thel is not technology-specific, but is capable of supporting technology-
specific features. It can also support various hard hnologies; for pl

you may define new logic types and new components; you may also specify
technology-specific attributes. By being technology-independent, the same model

can be synthesised into different vendor libraries.

h

> It supports both syncl and timing models.

» Various digital modelling techniq such as finite-stat, hine descriptions

algorithmic descriptions, and Boolean equations, can be modelled using the

language.

102

> The language is publicly available, human-readable, and, above all, it is not
proprietary.

> Itis an IEEE and ANSI standard; therefore, models described using this language
are portable. The US government also has a strong interest in maintaining this as a

dard, so that rep and second sourcing may become easier.

> The language supports three basic different styles: structural, dataflow, and
behavioural. A design may also be expressed in any combination of these descriptive
styles.

> It supports a wide range of abstraction levels ranging from abstract behavioural
descriptions to very precise gate-level descriptions. However, it does not support
modelling at or below the transistor level. It allows a design to be captured at the
mixed level using a single coherent language.

> Arbitrarily large designs can be modelled using the language, and there are no
limitations imposed by the language on the size of a design.

> The language has elements that make large-scale design modelling easier; for

1 functi dq and pacl

P P P &

> Test benches can be written using the same language to test other VHDL models.

> Nominal propagation delays, min-max delays, setup and hold timing constraints,
and spike detection can all be described very naturally in this language.

> The use of generics and attributes in the models facilitate back-annotation of
static information such as timing or placement information.

> Generics and attributes are also useful in describing parameterised designs.

103

> A model can not only describe the functionality of a design, but can also contain
information about the design itself in terms of user-defined attributes, such as total
area- and speed.

» A common language can be used to describe library components from different
vendors. Tools that understand VHDL models will have no difficulty in reading
models from a variety of vendors since the language is a standard.

> Models written in this language can be verified by simulation since precise
simulation semantics are defined for each language construct.

> Behavioural models that conform a certain synthesis description style are capable
of being synthesised to gate-level description.

> The capability of defining new data types provides the power to describe and
simulate a new design technique at a very high level of abstraction, without any

concern about the implementation details.

6-1-4 Hardware Abstraction

VHDL is used to describe a model for a digital hardware device. This model specifies
the external view of the device and one or more internal views. The internal view of the

device specifies the functionality or structure, while the external view specifies the

interface if the device through which it i with the other models in its

environment. Figure (1) shows the hardware device and the corresponding software

model.

104

Device Device Mode!

Digital

\ AR

System

vl

Internal views

Figure (1). The hardware device and the corresponding software model

The device-to-device model mapping is strictly one-to-many model. That is, a hardware
device may have many device models. For example, a device modelled at a high level of
abstraction may not have a clock as one of its input, since the clock may not have been
used in terms of, say, integer values, instead of logical values. In VHDL, each device
model is treated as a distinct representation of a unique device called an entity. Figure
(2) shows the VHDL view of a hardware device that has multiple device models, with
each device model representing one entity. Although, entity 1 through N (see Figure 2)
represents N different entities from the VHDL point of view, in reality they represent the

same hardware device.

= |
e S T

Figure (2). VHDL view of a hardware device that has multiple devices models.

6-2 VHDL Implementation of the Parallel Learning-Processing Neuron

6-2-1 Introduction

Before going further in the implementation of the PLPN based BAM using the VHDL
description, it is worthy to think first about the different aspects and structures of this
programming style and its useful capabilities. However, the structure of the precedent
implementation will be described by the VHDL language and in the way (as needed) the

reader will be introduced to the VHDL p ing ch istics. Besides, the

important aspect of the different programming styles used for the implementation,

mainly the functionally partitioning model that was independently suggested for the chip

modelling strategy by Armstrong [2], will also be p d. The preced: hniq)

1 : q

dividing the synapses into excitatory and inhibitory are in this imp g

internally after presenting the association. This technique is used in order to minimise

the cost of the circuit although other version of this technique has been i pl d

using one synapse that was observed to be hardware intensive.

6-2-2 Network Source Code

For the implementation of the present circuit, the VHDL description has been divided
into two different parts:

1) The neuron unit: and its VHDL description is presented in Appendix B.

2) The Control unit: and its VHDL description is presented in Appendix C.

In the control unit part, a circuit that will synchronise between the neurons was created.
This unit will protect the network from any confusion in its outputs or any overlap
between the different states of the single neuron similar to the lights and cars in the

traffic ways.

106

The neuron itself has to do different operations by being in different phases to
implement the suggested Parallel Learning Processing strategy. These operational
phases are:

1) Initialisation Phase

2) Memories-number Storing Phase

3) Operating Phase.

In the initialisation phase, each neuron's output will be initialised (‘1” or ‘0’) which with

3

the other neurons outputs will itute the initial guration of the neural network.

During the second phase, the neuron stores the number of memories that will be sent
periodically to it during the operating phase.

In the operating phase, the neuron performs the inner product multiplication between the
input vector signal, which contains the output of the connected neurons to the local one,
and the corresponding synaptic strengths.

Before going further in the definition of the internal structure of the neuron, first the
interface ports of the neuron circuit, through which it communicates with the control

unit and the network neurons, is to be defined. This is performed by the entity construct.

6-2-2-1 The Entity

The input and output ports which are defined in the entity unit of the program are shown
in the diagram of the Figure (3).

In this unit, the generic statement has been used. This kind of statements is used to
define some internal constant parameters of any circuit such as delay timing, bus width

and other VHDL specific objects such as the filename and so on.

107

= 3
Th_asev -> .
Sgi_in @ o

Figure (3). Representation of the interface ports signals of a single PLP Neuron.
The buses are presented by big arrows and the single signals are presented by small ones

In the present design the generic statement has been used to declare constants that will
represent the width of the configuration bus signal declared as sgl_in, the accumulator,

the memory storing-number bus nb_mem, and intermediate variables,

6-2-2-2 The Architecture
The architecture construct of the system defines the internal structure of the neuron. One
of the most important characteristics of this VHDL construct is that it can be written in

different ways. Theses hods are lly dependent on the modelling techniques

used by the designer, which are the basic styles of VHDL description of the
architectures. These styles could be summarised in the following:

1) The behavioural Style.

2) The Data-flow Style.

3) The structural Style.

108

In the behavioural style, the behaviour of the entity is expressed using sequentially
executed, procedural code, which is very similar in syntax and semantics to that of a
high-level programming language like C or Pascal. The process body construct, which is
one of the most useful VHDL description tools, is the primary mechanism used to model

the behaviour of an entity. This modelling style was adopted in the i p ion of

the PLP neuron because of its flexibility and simplicity to design complex circuits.

The Data-flow style specifies the functionality of the entity without explicitly specifying
its structure. This functionality shows the flow of information through the entity and it is
expressed primarily using concurrent signal assignment statements beside other specific
statements such as the block statement that is quite similar to the process statement. In .
this modelling style, in contrast with the behavioural modelling, the functionality of the
entity is expressed using statements that are executed in concurrent (parallel) fashion.

In the structural modelling style, the entity is modelled as a set of components connected
by signals like a netlist. The behaviour of the entity is not explicitly apparent from its
model. The components are entities of circuits, where their architecture is already
defined, and is used as components when the need to use them from other circuits
descriptions arises. The component instantiation statement is the primordial VHDL
construct used for describing such a model of an entity.

For the implementation of the PLP neuron a modelling technique based on the
communication between the different process, which constitute our architecture has been
suggested. Each process in the architecture has a special task to perform in parallel or
sequential fashion depending on the task to be realised. In the diagram bellow, a process

model graph called the functionally Ipanitioning model has been presented to clarify the

109

communication among the different processes. This modelling technique has been

ly by A g [2].

d

suggested previously and indep

6-2-3 Functionally Partitioning Model Graph

For the clarification of the graph in Figure (4), let first define some useful symbols in
order to understand the different steps of the processing. The narrow vector represents a
signal that belongs to the sensitivity list of the indicated process. Another vector that
represents a signal belonging to the sensitivity list of the concerned process is the double
interpenetrated vector, which represent only the bus signal of the associated bit to the
associated vector. Finally, the side-shaded arrow represents the clock signal which is a
sensitivity signal of the principal process while the last represents the signal (bus or not)
used inside the process itself. The process is represented in the above diagram by a
circle. The process statement is however, one of the most important statements used in

VHDL behavioural progr ing. It i quential that describe the

functionality of a portion of an entity in sequential terms. A set of signals to which the
process is sensitive is defined by the sensitivity list so that, each time an event occurs in
the sensitivity list, the statements within the process are sequentially executed. The
process then suspends after executing the last statement and wait for another event to
occur on a signal in the sensitivity list.

The Calcul process is the main process in our implementation, which is reflected by its
central position of the above graph. It has the clock signal clk in its sensitivity list,
therefore it is executed each time the clock get an event 0’ to ‘1’ or ‘1’ to “0". The
positive edge triggering of the clock was chosen in order to meet the current designing

convention,

110

Figure (4). Process Model Graph: Functionally Partitioned Model of the Neuron
architecture.
This process is also governed in its functioning by the value of the bus signal key which
let the process do different functions. The key itself is composed of two input signals,
the signal w_up and the signal load. When the bus signal key is equal to “00” the Calcul
process initiate, after the positive triggering of the clock, the default output of the
neuron. Therefore, the neuron is in the initialisation phase. When the signal key is equal
to “10” the neuron is in the memories-number storing. Then, the Calcul process begins
the operating phase when the signal key changes to “01”. In this step, the neuron enters
the operating phase and 'awakes' two processes excito and inhito by sending their

sensitivity signals excita and inhibi respectively. The two processes will perform in

parallel the inner product between the bus signal sgl_in and the signal ext, and the sgl_in

1

and the signal inh, respectively. The signal ext rep the corresp g excitatory

hs of the iated vectors from X layer and Y layer and the signal inh

ynap B!

represents the inhibitory one. They are generated from the Syn_Str process, which is

hroniced

sensitive to the associated vectors, sent i ly by a sy memory.

Synchronised memory represents the corresponding memory defined in the synaptic

h subcircuit of the previous PCB impl ion, After the calculation of the

corresponding inner products, the two p stores the product into two separate
internal buses, and will 'awake' at the same time another two processes Acc_ext and
Acc_inh. This is done by sending two signals sgl_e and sgl_h respectively. The two

respective active p will I ively the results of the previous

P

processes to their precedent signal values tot_ext and tot_inh. The process Calcul
continues processing this step and verifying that the number of sent memories has
achieved or not the limit stored during the memories-number storing phase. When the
limit is achieved the Calcul process will compare between the signal tot_ext and signal

tot_inh in order to get the correct output that will be assigned to the neuron.

6-2-4 The Control Unit

In the above hs, the impl ion of the PLP neuron, that is the basic

computational unit in the network has been described. However, to realise the complete
network, a control unit is needed. The control unit that will harmonise between the
different implemented PLP neurons is defined in the top-level circuit VHDL description.
This unit has been implemented to avoid confusion and mis-functioning among the

neurons in the two layers X and Y. It controls and regularises between the phases of the

neurons in both layers. It means that this control unit will set up the control signals load

and w_up of all the neurons in the layers X and ¥ in following way. Firstly, both layers

will be initialised and let store the number of p ing memories simul ly. After
that, one layer will start the processing phase (its bus signal key getting “01”) while the
other is idle. In the present implementation the idle phase is replaced by the memories-
number storing phase in order to make the PLPN based BAM more flexible and
dynamically reconfigurable. It means that it can be used to handle different number of
associated memories with different kind of memories without the need of relearning it
by increasing or deleting the stored ones. Here exactly comes the usefulness of our
suggested strategy of PLP based BAM, i.c., that the neural network is able to learn or

store and process simui ly at any any information. Beside the control unit

in the top-level, the appropriate connections between all the neurons in both layers have
been created. Therefore, in order to define these connections, the use of another

important pecially when impl ing artificial neural networks called

package is needed. The package is impl d ly from the top-level source
code but it will be called later by this source to use its implemented signals, in the

package body, when specifying the work library in the top-level source code description.

6-2-5 Serial and Parallel Processing Versions

The central processing area in the implementation of the artificial neuron is the

multiplication of the inner product of its input vector bits with their corresponding

synaptic gths. After realising this multiplication, a ion operation has to be
performed to sum the products of this multiplication. The multiplication is realised using
AND pgates, whereas the bits summation imply two methods of implementations. The

13

first, is the parallel version, where each multiplicati Iting bit is hed to an

adder in a serial way with the other bits so that the summation will propagate from an
added to an adder. This operation is carried out at every clock rising during the operating
phase (see Figures (5), (6), (7) and (8)).

The second method is the sequential version, which implies the use of the accumulator,
where at each step the output of the accumulator will be updated by the new added

product bit. However, after some edge rising of the clock signal (equal to the number of

the d bits), the 1 will output the result of the total summation of the

Tnded

inner products. It can be comparing b the two versions of the inner

product summation, that more the required operation to be implemented is aimed to be

fast, more the hardware expense increases and vice versa.

114

> INSTEX_NX(0 23) Fo0000

> NSTEX_NY(031) FFE00000

> NSTN_Xp31) WU | FRE000

> INSTAY_Wio31) uuuwuuy | 00000000
-NSTM_UPX u

- INSTIGO(OYG1 CLX.
> L INSTIGOOVG1/TB_ASSV(0:32) Uy
> _NSTOO/1SaL NO31) [T | Freooo00

B NST00YG 1INH(O31) ooy

| #rrroon

| oomorrre
t—— [

L

> INSTRXOVGINK_SUMOA) w
NSTOVCISOLH
> INSTIGOOVGITOT_INH03) xx [=
> NSTRUOVRIEXT(031) [y [rrerame
NSTRAOVGUECTA
» L INSTIGO(OGIEXT_SUM04) 0 L]
INSTIG0(0¥6 1561 _E
> NSTROO/GITOT_EXTOR) xxx L]
NSTOAYGIOUTPUT [l
INSTRUOVISEND]
» NS Y023) [Foo000
ST WY023) ww w0000
«INSTW_UPY ')
> NSTGAO/GKEN(1D) [2 [[
NSTR0/aYCLX
-NSTIG20/G3T8_ASSV026 [y [
> NSTRAYCSOL N0Z) [| P00
> NSTO20VGIMNNO 23) oy [owrer
NSTR0/CUNHE
> INSTIG0)GINH_SUMDA) L
~INSTIG2(0YGYSGLH
> NSTRGYTOT WHoY o

v

v

~INSTRAYQVEXCTA

> . INSTIG(0VQUEXT_SUM04) L]
INSTIG 200¥63/8GL_E

> INSTRYGUTOT_EXT03) o

- INSTRR2(0yGYOUTPUT u
- INSTIG2(0GYSEND [U
Figure (5). VHDL Simulation Diagram of the Parallel version of the Digital PLP-based
BAM circuit in the time interval [0 ns, 500 ns].

1s

> INSTEX_NX(0.23)
> NSTEX_WY(031)

)
)
» _INSTN Xp31)
> INSTSY_Wxo:31) 00000000
-NSTH_UPK
> 1
vewgnes [T [T T —
> NSTROOGIT NSO [FrrRom] wrEsorer [worororo 000303 FEFROD | FPEQOTFF
P> INSTIO(0YG1/SGL_INO:31) 11111111111000000000000000000000
B NSTR00YO1WH0 31) OOFFFF | cowre [orororee [oo | wowr | oo
NS00V B]
> INSTIOX0VG1 ANH_SUMD4)] o o)
~INSTIOOYGISGIH
> . INSTIOXOYG1/TOT_INHO:2) 00 o4 008 0
> INSTROOYGIEXT(031) w0 pEoE [R | pomes | FrFRom [Freconre
. INSTIOOOVQUEXCITA 1
> L INSTIXIYGVEXT_SUM0A4) [o u o
INSTIG 00V 1/8GL_E
» L INSTIGOVGITOT_EXTI02) s | o8 o o7 8
- NSTROYGIOUTPUT
- INSTIO/QISEND
> LINSTX_Y23) 111110000000000000000000 111111110000000011110000
> INSTSX_ WY[0:23) 000000 FFFFFF
_INSTH_UPY
» L INSTI2(OVGUKEY(10) [
INSTRYBICK
> INSTR20/QTEASSVR24) | ¥FFOd FFOOFF [weorco [ooorer [e | Frooer
» INSTIG2(0YGY/SGL_IN0:23) 111110000000000000000000 l 111111110000000011110000
> INSTIO 20K IMMHI0 23) oFFF [ooFFo0 [oweow I 00FOOF [ooorrr I
INSTIGHO/GUNHE
¥ . INSTI2(0VGUNH_SUMD4) L
~INSTR20YGYSAL H
> INSTI20/GYTOT_INH0:) o
> L INSTR2OYRVEXT(023) FFOOFF FCOFCO FFOFFO
- INSTIRAOVGYEXCTA
> INSTIR2(OVQUEXT_SUM04) L]

-INSTR 20003861 E
¥ - INSTI2OYGUTOT_EXT(03)
- INSTRR2(OYGIOUTPUT
- INSTIG2(0/GYSEND

L

Figure (6). VHDL Simulation Diagram of the Parallel version of the Digital PLP-based

BAM circuit in the time interval [500 ns, 1000 ns).

116

1100
N

1400
N

v v vvYveyw

v v

v v

INSTEX_MX(0 23)
INSTEX_NY(031)

- INSTN X@31)

~INSTEY_W(031)

INSTM_UPX

- INSTRO(O/GIKEY(1:0)

~INSTIOOVQ1CL

~INSTIOO(0V1/TB_ASSV(0:32)

-INSTIO(0VG1/5GL_N0:31)
NSTIGO(0YG1NN(0 31)

- INSTIRO(O/GINHIB!

- INST/GO(OVGINH_SUMD 4)

-INSTIO00/Q1SGL_H

INSTIGO(OVGUTOT_NH0)

-INSTR(0YQ1/EXT(031)

- INSTIGO(OVGI/EXCITA

~INSTRRO(OVGI/EXT_SUM(0:4)
WSO/ 15861_E

-INSTRO(/GITOT_EXTOS)

- INSTIGO(0YG1/OUTPUT

INSTIOOVGISEND

LINSTX_Y(023)

-INSTBX_WY(0:23)

LINSTIW_UPY

. INSTRR(OVGIXEY(1:0)

- INSTIG2(0/G3CLK

~INSTIG2(0/GYTB_ASSV(024)

~INSTI2(0/QVSAL, IN0-23)
INSTIG 2OYG IMH(0 23)

- INSTIG2(0/GINHIB!

~INSTI2(0VGINH_SUMO4)

- INSTI2(0/0YSaL H

- INSTI2(0/GTOT_NH08)

- INSTAR0/QVEXT(023)

- INSTI0QVEXCITA

~INSTAR2(0VGUEXT_SUM04)
INSTIG2(0YG3/561_E

~INSTIR2(0/QI/TOT_EXT(02)

- INSTR2(0/QYOUTPUT
INSTIR2(0VGYSEND

FrEOTFE[worokoro | 00303 | wrrRoooo
11111111111000000000000000000000
oorFmo | oForoFoF [oo3reF | O000FFFF | oFFe0 [orororor
) o
0 oo
FROOTFF[pororoF0 | om0 | P00 | reoTeE | FoFororo
) o o7
8 o2 [
I
111111110000000011110000
FFFFFF. | 000000
o 1
FROFF | rcorco [oooroor [oo [wroorr [weorco
111111110000000011110000
OFR0 | 0303 [00FOOF [ooom [wr [osrosr
[
) ™ w o
L
xxx | 00 004 08
frer | w0 | o [o [mer | oo
L
0 o o o 08
o 3 o 2 w2

Figure (7). VHDL Simulation Diagram of the Parallel version of the Digital PLP-based
BAM circuit in the time interval [1000 ns, 1500 ns].

17

Lm 1600 1700 1800 1500 20
N L

vovY vy

v v

v

v v

INSTEX_INX(0 23)

INSTEX_NY(0 31)
- INSTN Xpp31)
-INSTEY_Wio31)
_INSTO_UPX

Feoooo

FFE0000
1111111111100000000001 1111000000

e I

]
00000000 [

~INSTIGO(O/G1CLK
INSTIRO(/GTB_ASSV(032)
~INSTIGN(0YG1/SaL_N0:31)
INSTAG0(0VG 1ANH(O 31)
~INSTIGO(Y01 ANHE
~INSTABO(0/G1 INH_SUMD4)
- INSTIRO0/G1SAL W
~INSTROVGTOT_NHo2)
- INSTIRO(OYGI/EXT(031)
~INSTIGO{OVGYEXCITA
- INSTRRO(OVGIEXT_SUM(0:4)
INST/S0{0¥G 15561 _E
INSTIGO(O/G1TOT_EXT(03)
- INSTROOVGIOUTPUT
- INSTIGO(OYGISEND
~INSTA_Y(023)
~INSTISX WY(023)
L INSTA_UPY
- INSTIG20/GIKEY(1:0)
LINSTIG(OVGICLK
~INSTRG2(0YGYTB_ASSV(024)
-INSTIR(0/GU/SAL_IN0:23)
INST/G 2(0/G 3ANM(0 23)
< INSTIG2(0/GUNHE
- INSTIG2(0GINH_SUMO 4)
~INSTI2(0/GYSAL H
INSTIR(OVRYTOT_INH0:)
~INSTRR(0VQU/EXT(023)
INSTR(OYGYEXCITA
~INSTRRAOYQUEXT_SUN(0:4)
INSTAG 2000635561 _E
~INSTIG{0)QUITOT_EXT(03)
< INSTIR(0/GOUTPUT
INSTIG2(OVGYSEND

FOFoFoFo]
|

oFoFoFOF |

|
1111111111100000000001 1111000000

ooFF |

FoFoFOFO| FrCoFCO |

012 o1

111111110000000011110000
000000

00 [oo | | oooroor
111111110000000011110000

00FFF [WFFo0 |

FFOOFF | PR | Frorro

[

Figure (8). VHDL Simulation Diagram of the Parallel version of the Digital PLP-based

BAM circuit in the time interval [1500 ns, 2000 ns].

18

