Dynamic Modelling of A Two-Stage
ATM Tandem Banyan Switch

THAM HON LOKE

Faculty of Computer Science and Information Technology
University of Malaya
2002
Dynamic Modelling of A Two-State
ATM Tandem Banyan Switch

by
Tham Hon Loke

Faculty of Computer Science and Information Technology
University Malaya

In Partial Fulfilment of the Requirement
for the Degree of Master of Computer Science
(Worth 6/30 credit hours)
2002
ABSTRACT

This dissertation studies the dynamic modelling of Two-State ATM Tandem Banyan Switch. First of all, ATM technology and ATM switch are introduced, then the ATM switch's architecture and its functions are discussed in detail. A Two-State ATM Tandem Banyan Switch has been selected as a model to be simulated. MATLAB's Simulink tool has been used to dynamically model the ATM switch. The ATM switch simulated is a simple two-stage Banyan Switch. It consists of 2 Inports x 2 Outports, with a switching algorithm included. The algorithm covers all cell flow patterns that are possible in a 2 Inports x 2 Outports Banyan Switch. The objective is to keep the cell loss rate at a minimum level. Lastly, this project presents an example of dynamic simulation, which will examine the cell flow patterns, cell loss rate and the switch performance. Discussion and overall conclusion are made based on the simulation results.
ACKNOWLEDGEMENTS

I have learnt a great deal in the process of completing this dissertation. A lot of people have contributed to it. I would like to take this opportunity to express my appreciation to all of them.

First of all, I would like to thank Assoc. Prof. Dr. Selvanathan Narainasamy, my supervisor for his invaluable guidance and advice throughout the writing of this dissertation. Special thanks to the exam panel for taking their time to go through this dissertation.

Thanks to my fellow course mates for sharing their knowledge generously and their company throughout the time in University Malaya.

Not forgetting, my dearest family members, I am grateful to them for their continuous support in my pursuit of this course and my endeavour.

Last but not the least, to my girl friend who always stands by me, giving me the strength I need to complete this dissertation successfully.
TABLE OF CONTENTS

ABSTRACT ... i
ACKNOWLEDGEMENTS ... ii
TABLE OF CONTENTS ... iii
LIST OF FIGURES ... vii
LIST OF TABLES ... viii
ACRONYMS .. ix

CHAPTER 1: INTRODUCTION TO ATM SWITCH AND ATM SIMULATION SOFTWARE 1
 1.1 INTRODUCTION TO ASYNCHRONOUS TRANSFER MODE (ATM) TECHNOLOGY ... 1
 1.1.1 Quality of Service and Service Categories .. 2
 1.1.2 ATM Cell Format ... 3
 1.2 ATM SWITCH .. 4
 1.2.1 ATM Switch Functions .. 4
 1.3 ATM SWITCH SIMULATION .. 6
 1.3.1 Simulation .. 6
 1.3.2 Simulation Software .. 6
 1.4 INTRODUCTION TO SIMULINK ... 8
 1.5 OBJECTIVES OF THE DISSERTATION .. 9
 1.6 SCOPE OF THE PROJECT ... 10
 1.7 THE STRUCTURE OF THE DISSERTATION ... 11

CHAPTER 2: ATM SWITCH ARCHITECTURE, FUNCTIONALITY AND DESIGN PRINCIPLE 12
 2.1 SWITCHING FUNCTIONS .. 12
 2.1.1 User Plane ... 12
 2.1.2 Control Plane ... 12
 2.1.3 Management Plane .. 13
 2.1.4 Traffic Control Functions .. 13
 2.2 A GENERIC ATM SWITCHING ARCHITECTURE ... 13
Table of Contents

2.2.1 Switch Interface .. 14
2.2.2 Cell Switch Fabric ... 15
2.2.3 Connection Admission Control (CAC) 15
2.2.4 Switch Management ... 16

2.3 THE CELL SWITCH FABRIC .. 17
2.3.1 Concentration, Expansion and Multiplexing 17
2.3.2 Routing and buffering .. 18

2.4 SWITCH DESIGN PRINCIPLES .. 25
2.4.1 Internal Blocking .. 25
2.4.2 Buffering Approaches ... 25
2.4.3 Buffer Sharing .. 27

2.5 BANYAN NETWORK ... 29
2.5.1 Tandem Banyan Switch Architecture 30
2.5.2 Knockout Switching Architecture 32

2.6. SUMMARY .. 34

CHAPTER 3: SIMULATION AND SIMULINK 35

3.1 INTRODUCTION TO SIMULATION 35
3.1.1 Basic Concepts .. 35
3.1.2 Continuous versus Discrete ... 36
3.1.3 Stochastic versus Deterministic 36
3.1.4 Discrete Event Simulation ... 37
3.1.5 Event-Driven versus Time-Driven in Discrete Event Simulation ... 37
3.1.6 Computer Simulation ... 38

3.2 MODELLING AND SIMULATION ... 39
3.2.1 Modelling and Simulation Cycle 39
3.2.2 Simulate ATM Tandem Banyan Switch Model 41
3.2.3 Assumption and Performance Issue 43

3.3 COMPUTER SIMULATION USING SIMULINK 44
3.3.1 What is Simulink .. 45
3.3.2 Why use Simulink? .. 46
3.3.3 Application in Simulink Toolboxes 46

3.4 ADVANTAGE OF USING SIMULINK 50
3.5 SUMMARY .. 50

CHAPTER 4: DYNAMIC MODELLING AND SIMULATION 51
Table of Contents

4.1 MODELLING A TWO-STAGE ATM TANDEM BANYAN SWITCH .. 51
 4.1.1 Two-State ATM Tandem Banyan Switch Model ... 52
 4.1.2 Modelling and simulation of A Two-State ATM Tandem Banyan Switch Model 53
4.2 CHARACTERISTIC OF MODEL TWO STAGES ATM TANDEM BANYAN SWITCH 54
4.3 IMPLEMENTATION ISSUE ... 56
 4.3.1 How models are represented in Simulink tool ... 56
 4.3.2 How models are built in Simulink ... 56
 4.3.3 How models are connected among each other ... 56
 4.3.4 How simulation works .. 57
 4.3.5 Important Simulink blocks that make this simulation project works 58
4.4 TRAFFIC GENERATOR MODEL .. 59
 4.4.1 Traffic Generator Model ... 59
 4.4.2 Sample Generator Model ... 61
 4.4.3 Buffer Queue Model .. 62
 4.4.4 Link Size Model .. 62
 4.4.5 Control Algorithm Model ... 62
 4.4.5 Control Mechanism Model .. 63
4.5 OUTPUT DISPLAY MODEL ... 63
4.6 BANYAN SWITCH MODEL ... 64
 4.6.1 Demultiplexer Model for Switching Algorithm... 65
 4.6.2 Switching Algorithm Model and Switching Mechanism Model 66
 4.6.3 Multiplexer Output Model ... 71

CHAPTER 5 DISCUSSIONS AND CONCLUSIONS .. 74

5.1 TWO STAGE ATM TANDEM BANYAN SWITCH SIMULATION 74
 5.1.1 No cell flow between Import and Export of the switch .. 75
 5.1.2 Cell flow from one import to one export ... 75
 5.1.3 Cell flow from two imports to two different outputs .. 76
 5.1.4 Cell flow from two imports to the same outputs .. 76
5.2 DISCUSSION ON SIMULATION RESULT ... 77
 Tick defined as cycle time for a specific sample rate. For example: 77
 Sample Rate 1 (0.05ms) at Banyan Switch means one tick will required 0.05ms. 77
 Sample Rate 2 (0.025ms) at Multiplexer Switch means one tick will only required 0.025ms. 77
 5.2.1 Example of Cell Flow without Blocking Condition ... 78
 5.2.2 Example of Cell Flow with Blocking Condition ... 79
 5.2.3 Overall Result Discussion ... 80
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3 Assumptions</td>
<td>82</td>
</tr>
<tr>
<td>5.4 Advantage of Dynamic Modelling an ATM Banyan Switch</td>
<td>84</td>
</tr>
<tr>
<td>5.5 Limitation of Dynamic Modelling an ATM Banyan Switch</td>
<td>85</td>
</tr>
<tr>
<td>5.6 Areas of Enhancements</td>
<td>85</td>
</tr>
<tr>
<td>5.7 Overall Conclusion</td>
<td>86</td>
</tr>
<tr>
<td>Bibliography</td>
<td>88</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

FIGURE 1.1 THE CELL FORMAT FOR UNI (LEFT) AND NNI (RIGHT) .. 3

FIGURE 2.1: A GENERIC SWITCHING MODEL .. 14
FIGURE 2.2 BASIC STRUCTURE OF A SHARED-MEMORY SWITCH .. 19
FIGURE 2.3 A SHARED BUS SWITCH ... 20
FIGURE 2.4 A FULLY INTERCONNECTED SWITCH ... 21
FIGURE 2.5 SWITCHING ELEMENT, 4X4 BANYAN NETWORK AND 8X8 BANYAN NETWORK 23
FIGURE 2.6 THE VARIOUS BUFFERING APPROACHES .. 26
FIGURE 2.7 EXAMPLE OF SWITCH ARCHITECTURE .. 29
FIGURE 2.8 ATM TANDEM BANYAN SWITCH ARCHITECTURE ... 30
FIGURE 2.9 KNOCKOUT SWITCHING ELEMENT .. 32
FIGURE 2.10 KNOCKOUT BUS INTERFACE .. 33

FIGURE 3.1 MODELLING AND SIMULATION CYCLE ... 39
FIGURE 3.2 ARCHITECTURE OF AN ATM TANDEM BANYAN SWITCH .. 42
FIGURE 3.3 SIMULINK BLOCK LIBRARY ... 47
FIGURE 3.4 AN EXAMPLE OF SIMPLE SIMULINK MODEL .. 48
FIGURE 3.5 AN EXAMPLE OF SCOPE ... 48
FIGURE 3.6 LAYOUT OF SIMULINK SOFTWARE ON THE COMPUTER SCREEN 49

FIGURE 4.1: TWO-STAGE ATM TANDEM BANYAN SWITCH MODEL ... 52
FIGURE 4.2 MODELLING AND SIMULATION OF A TWO-STAGE ATM TANDEM BANYAN SWITCH ... 53
FIGURE 4.3 TRAFFIC GENERATOR MODEL .. 59
FIGURE 4.4 OUTPUT DISPLAY MODEL .. 63
FIGURE 4.5 BANYAN SWITCH MODEL ... 64
FIGURE 4.6 DEMULTIPLEXER MODEL FOR SWITCHING ALGORITHM MODEL 65
FIGURE 4.7 SWITCHING ALGORITHM MODEL .. 66
FIGURE 4.8 SWITCHING MECHANISM MODEL .. 66
FIGURE 4.9 ALL 16 POSSIBLE CELL FLOW SCENARIOS IN A 2 INPORTS X 2 OUTPORTS ATM BANYAN SWITCH 67
FIGURE 4.10 BLOCKING CONDITION FOR BOTH INPORT 0 AND INPORT 1 CELL INTEND TO SWITCH TO OUTPORT 0 ... 68
FIGURE 4.11 BLOCKING CONDITION FOR BOTH INPORT 0 AND INPORT 1 CELL INTEND TO SWITCH TO OUTPORT 1 .. 68
FIGURE 4.12 MULTIPLEXER OUTPUT MODEL .. 71
FIGURE 4.13 MULTIPLEXER OUTPUT IN PULSE FORMAT ... 72
LIST OF TABLES

TABLE 4.1 MOSTLY USED SIMULINK BLOCK

TABLE 4.2 LOGIC EXPRESSION FOR SWITCHING ALGORITHM MODEL THAT COVER
 ALL 16 CELL FLOW SCENARIOS

TABLE 5.1 CELL FLOW PATTERN FOR A 2 INPORTS X 2 OUTPORTS ATM BANYAN SWITCH
ACRONYMS

ATM Asynchronous Transfer Mode
ABR Available Bit Rate
CAC Connection Admission Control
CBR Constant Bit Rate
CDV Cell Delay Variation
CLR Cell Loss Ratio
CTD Cell Transfer Delay
DEMUX Demultiplexer
FIFO First In First Out
GUI Graphical User Interface
HEC Header Error Control
IM Input Module
ISDN Integrated Services Digital Network
ITU International Telecommunication Union
LAN Local Area Network
MINs Multistage Interconnection Networks
MUX Multiplexer
NIST National Institute of Standards and Technology
NNI Network-Node Interface
NPC Network Parameter Control
OAM Operation and Maintenance
OM Output Module
OPNET Optimised Network Engineering Tool
QoS Quality of Services
SM Switch Management
SONET Synchronous Optical Network
STM Synchronous Transfer Mode
TBSA Tandem Banyan Switch Architecture
TDM Time Division Multiplexing
UBR Unspecified Bit Rate
<table>
<thead>
<tr>
<th>Acronyms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNI</td>
<td>Unified Network Interface</td>
</tr>
<tr>
<td>UPC</td>
<td>Usage Parameter Control</td>
</tr>
<tr>
<td>VC</td>
<td>Virtual Connection</td>
</tr>
<tr>
<td>VCC</td>
<td>Virtual Channel Connection</td>
</tr>
<tr>
<td>VCI</td>
<td>Virtual Channel Identifier</td>
</tr>
<tr>
<td>VoIP</td>
<td>Voice over Internet Protocol</td>
</tr>
<tr>
<td>VPI</td>
<td>Virtual Path Identifier</td>
</tr>
<tr>
<td>WWW</td>
<td>World Wide Web</td>
</tr>
</tbody>
</table>