EPSTEIN-BARR VIRUS SEROLOGY IN THE DIAGNOSIS OF NASOPHARYNGEAL CARCINOMA FROM SARAWAK

MADELINE WONG MEI FONG

A DISSERTATION SUBMITTED TO THE INSTITUTE OF POSTGRADUATE STUDIES, UNIVERSITY OF MALAYA, IN PARTIAL FULFILMENT FOR THE DEGREE OF MASTER OF BIOTECHNOLOGY

INSTITUTE OF POSTGRADUATE STUDIES UNIVERSITY OF MALAYA KUALA LUMPUR MALAYSIA FEBRUARY 2001
ABSTRACT

The Epstein-Barr virus (EBV) is closely associated with nasopharyngeal carcinoma (NPC). The role(s) of EBV in NPC remains unclear but antibodies to two EBV proteins namely the viral capsid antigen (VCA) and early antigen (EA), are clinically useful diagnostic markers of NPC.

The NPC scenario in Malaysia has been based on studies done on West Malaysian patients but not much has been described for NPC in Sarawak, East Malaysia. In this study, 164 NPC sera from newly histologically confirmed NPC patients were collected from the Radiotherapy Unit of Kuching General Hospital, Sarawak prior to radiotherapy. One hundred and forty seven non-NPC controls that were sex, age and ethnic groups matched were also collected.

Among the NPC samples, the male to female ratio was 3.4 : 1 with mean age of 47.9 years. The ethnic group distribution among the 164 NPC cases was as follows: 69 cases of Ibans (42.1%), followed by Chinese (22.5%) and the Bidayuh (14.6%). The Ibans are 29.6% of the population while the Chinese make up 27.4%. The high incidence of Iban NPC patients is of interest since the origin of the Ibans is distinct from the Chinese who are known to have the highest incidence of NPC.

The immunofluorescence assay (IFA) for anti-EBV antibodies was used to titrate the serum IgA and IgG against VCA and EA. The present study found highly significant differences in the titres of all 4 markers (IgA/VCA, IgG/VCA, IgA/EA and IgG/EA) between NPC patients and the non-NPC controls. The geometric mean titres (GMT) for NPC sera were 34.8 for IgA/VCA, 412.4 (IgG/VCA), 14.9 (IgA/EA) and 76.0 (IgG/EA), compared to 2.3, 9.6, 2.0 and 3.1 in the non-NPC control sera. These anti-EBV titres were found independent of sex, ethnic groups and age.

For each serological marker, the sensitivity and specificity of the test determined the cut-off titre for positivity. A positive titre was ≥10, ≥160, ≥5 and ≥40 for IgA/VCA, IgG/VCA, IgA/EA and IgG/EA respectively. The GMT of the serological markers in NPC patients with elevated antibody levels was 55.6 for IgA/VCA, 576.5 for IgG/VCA, 29.0 for IgA/EA and 166.3 for IgG/EA. With a cut-off titre at ≥160, IgG/VCA was the most sensitive marker (89.0%) with a 98.0% specificity. For IgA/EA at a cut-off titre of ≥5, it was the most specific marker (100.0%) but the least sensitive (75.0%). The sensitivity and specificity of IgA/VCA was 83.6% and 97.3% at a cut-off titre at ≥10. IgG/EA had a sensitivity of 76.8% and specificity of 99.3% at a cut-off titre of ≥40.

A significant correlation was found between IgG/VCA (the most sensitive at ≥160) and the titres of the other 3 anti-EBV markers, indicating that if a patient has IgG/VCA antibodies, the other anti-EBV antibodies are likely elevated. One hundred and twelve (68.3%) of the 164 NPC patients were positive for all 4 markers, while 14 patients (8.5%) had no antibodies to any of the 4 EBV antigens. Eighteen (11.0%) NPC patients were positive for 3 markers, which included IgA/VCA, 10 (6.0%) NPC patients were positive for 2 markers, which also included 5 positive IgA/VCA samples and 10 (6.0%) NPC patients were positive for only 1 marker of which 2 were IgA/VCA positive. Based on the comparative sensitivity and specificity of the 4 anti-EBV antigens test, a combined use of IgG/VCA (≥160) and IgA/VCA (≥10) would improve the sensitivity of EBV serology in the diagnosis of NPC to 90.9%.
The role of EBV BHRF1 protein in NPC has been postulated to be through the prevention of apoptosis of EBV-infected cell during the early stages of NPC development, and antibodies to BHRF1 are detected in NPC patients. This protein might be a good marker for NPC diagnosis (Liu et al., 1998). For the determination of the BHRF1 protein linear epitope, 10-mer peptides were synthesised using the Multipin Peptide Synthesis kit. A total of 46 peptide fragments covering the entire 191 amino acids of BHRF1 were synthesised. The synthetic peptides of BHRF1 protein served as target antigens in ELISA and were tested for IgA specific antibodies in 5 NPC sera and 1 control serum. Five of the 46 synthetic peptides showed strong distinguishable IgA binding with NPC sera (peptides 6, 17, 26, 27 and 29). Peptide 17 (FTETWNRFIT) has the highest IgA specific binding and is a potential EBV antigen epitope candidate for NPC monitoring.
ABSTRAK

Virus Epstein-Barr (EBV) telah dikaitkan dengan karsinoma nasofarinks (NPC). Hubungan antara EBV dengan NPC masih tidak jelas tetapi antibodi terhadap dua protein EBV iaitu antigen kapsid virus (VCA) dan antigen awal (EA) memainkan peranan penting sebagai penanda dalam diagnosis NPC.

Senario NPC di Malaysia adalah berdasarkan kajian yang dijalankan di Semenanjung Malaysia tetapi tidak banyak data mengenai NPC di Sarawak, Malaysia Timur dilaporkan. Dalam kajian ini, 164 serum NPC diperolehi daripada pesakit sebelum radiasi dijalankan di Unit Radiotherapi, Hospital Besar Kuching, Sarawak. Pesakit-pesakit tersebut telah disahkan menghidap NPC secara histologi. Sebanyak 147 serum kawalan bukan NPC yang jantina, umur dan kaum berpanduan juga diperolehi.

Dikalangan sampel NPC, nisbah jumlah lelaki kepada perempuan adalah 3.4:1 dengan purata umur 47.9 tahun. Taburan kaum bagi 164 sampel tersebut adalah seperti berikut: kaum Iban dengan 69 kes (42.1%), diikuti kaum Cina (22.5%) dan Bidayuh (14.6%). Kaum Iban merangkumi 29.6% daripada populasi manakala kaum Cina merangkumi 27.4%. Bilangan kes pesakit NPC yang tinggi dikalangan kaum Iban adalah fenomena yang menarik memandangkan asal-usul kaum Iban berbeza daripada kaum Cina yang mana terkenal dengan bilangan kes NPC yang tinggi.

Teknik imunofluoresens (IFA) untuk antibodi anti-EBV digunakan untuk mengesakan IgA dan IgG terhadap VCA dan EA. Kajian ini menunjukkan perbezaan yang berterti dalam titer bagi kesemua 4 penanda (IgA/VCA, IgG/VGA, IgA/EA dan IgG/EA) diantara kumpulan NPC dan kumpulan kawalan. Titer purata geometrik (GMT) bagi kumpulan NPC adalah 34.8 untuk IgA/VCA, 412.4 (IgG/VGA), 14.9 (IgA/EA) dan 76.0 (IgG/EA) berbanding dengan 2.3, 9.6, 2.0 dan 3.1 masing-masing untuk kumpulan kawalan. Titer-titer anti-EBV yang diperolehi tidak bersandar kepada jantina, kaum dan umur pesakit NPC.

Titer ‘cut-off’ untuk kepositifan bagi setiap penanda ditentukan oleh kesensitifan dan kespesifik an ujian. Titer positif adalah \(\geq 10, \geq 160, \geq 5 \) dan \(\geq 40 \) bagi IgA/VCA, IgG/VGA, IgA/EA dan IgG/EA. GMT penanda serologi kumpulan NPC yang menunjukkan peningkatan takat antibodi adalah 55.6 untuk IgA/VCA, 576.5 untuk IgG/VCA, 29.0 untuk IgA/EA dan 166.3 untuk IgG/EA. Dengan titer ‘cut-off’ \(\geq 160 \), IgG/VCA merupakan penanda yang paling sensitif (89.0%) dengan kespesifik 98.0%. IgA/EA pada titer ‘cut-off’ \(\geq 5 \), merupakan penanda yang paling spesifik (100.0%) tetapi kurang sensitif (75.0%). Kesensitifan dan kespesifik IgA/VCA adalah 83.6% dan 97.3% pada titer ‘cut-off’ \(\geq 10 \). IgG/EA mempunyai kesensitif 76.8% dan kespesifik 99.3% pada titer ‘cut-off’ \(\geq 40 \).

Kolerasi diperolehi diantara IgG/VCA (penanda paling sensitif pada \(\geq 160 \)) dan titer terhadap 3 penanda anti-EBV yang lain. Ini bermakna jika sesearang pesakit mempunyai titer IgG/VCA, antibodi anti-EBV bagi penanda yang lain juga besar kemungkinan adalah tinggi. Seratus dua belas (68.3%) daripada 164 pesakit NPC adalah positif terhadap keempat-empat penanda manakala 14 pesakit (8.5%) tidak mempunyai antibodi terhadap mana-mana 4 penanda tersebut. Lapan belas orang (11.0%) pesakit NPC adalah positif terhadap 3 penanda, termasuk IgA/VCA, 10 orang (6.0%) pesakit adalah positif terhadap 2 penanda, termasuk 5 sampel positif terhadap IgA/VCA dan 10 orang (6.0%) pesakit adalah positif terhadap 1 penanda sahaja,
termasuk 2 sampel positif terhadap IgA/VCA. Berdasarkan perbandingan kesensitifan
dan kespesifikan terhadap ujian bagi 4 antigen anti-EBV, penggunaan kedua-dua
penanda IgG/VCA (pada ≥160) dan IgA/VCA (pada ≥10) dapat mempertingkatkan
kesensitifan serologi EBV terhadap diagnosis NPC kepada 90.9%.

Protein EBV BHRF1 dalam NPC dicadangkan berperanan mencegah apotosis
dalam sel yang dijangkiti EBV semasa fasa awal perkembangan NPC. Antibodi
terhadap BHRF1 dapat dikesan dalam pesakit NPC. Protein ini mungkin berguna
sebagai penanda untuk diagnosis NPC (Liu et al., 1998). Untuk penentuan epitop
linear protein BHRF1, peptida 10-mer disintesis dengan menggunakan kit ‘Multipin
Peptide Synthesis’. Sebanyak 46 set peptida yang merangkumi kesemua 191 asid
amino bagi BHRF1 telah disintesis. Peptida sintetik BHRF1 digunakan sebagai
antigen dalam ELISA untuk mengesan kehadiran antibodi spesifik IgA dalam 5 serum
NPC dan 1 serum kontrol. Lima daripada 46 peptida sintetik (Peptida 6, 17, 26, 27
dan 29) menunjukkan reaktiviti yang tinggi terhadap antibodi IgA. Peptida 17
(FTETWNRFIT) telah mempamerkan ikatan antibodi spesifik IgA tertinggi dan oleh
itu berpotensi untuk digunakan sebagai epitop antigen EBV untuk tujuan pemantauan
NPC.
ACKNOWLEDGMENTS

Thank God for all of you as – ‘You Are the Wind Beneath My Wings’.

I would like to express my heartfelt thanks and gratitude to my supervisors, Assoc. Prof. Dr. Sam Choon Kook and Assoc. Prof. Dr. Cheng Hwee Ming, for their constant guidance and advice throughout this research period.

I wish to extend my sincere thanks to Dr. Lye Mann Sann and Puan Wan Rozita of the Institute of Medical Research (IMR) for their assistance and the collection of sera and Dr. Chong Ving Ching of IPSP for assisting in the statistical analysis. I am grateful to Prof. Chan Soh Ha and staff of the WHO Immunology Centre, National University of Singapore (NUS) for their hospitality and supply of the cells.

This study would not have been successful without the support of IPSP’s staff, the Vote F fund and Yayasan Felda. To everyone in the NPC lab namely - Soon Siew Choo, Danielle Wong, Tan Eng Lai, Chua Kien Hui, Katherine Francis, Shabana Aafaqi and Uncle Chong – thank you for the inspiration, help and the lovely working environment in the lab

Last but not least, to my parents, sisters and friends for their support, love and patience
LIST OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xv</td>
</tr>
</tbody>
</table>

CHAPTER 1: INTRODUCTION

1.1 General Introduction
1.2 Ethnic Group of Sarawak
1.3 Epidemiology of NPC
1.4 Classification of NPC
1.5 Aetiology Factors of NPC
 1.5.1 Genetic factors
 1.5.2 Environmental factors
1.6 Epstein-Barr Virus
1.7 EBV Structure
1.8 EBV Genome
1.9 EBV Infection
 1.9.1 Latent infection
 1.9.2 Lytic infection
1.10 EBV Antigens
 1.10.1 Viral capsid antigen (VCA)
 1.10.2 Early antigen (EA)
 1.10.3 BHRF1 protein
1.11 EBV Serology in NPC
1.12 Epitope Mapping Using Synthetic Peptides
 1.12.1 Multipin peptide synthesis
1.13 Objectives of This Study

1
4
4
6
7
7
9
11
13
14
16
16
19
20
20
21
23
24
29
32
33
CHAPTER 2: MATERIALS AND METHODS

2.1 Epstein-Barr Virus (EBV) Serology Assay
 2.1.1 Cell lines
 2.1.2 Solutions
 2.1.2.1 Culture medium
 2.1.2.2 Phosphate buffered saline (PBS)
 2.1.2.3 Sodium butyrate (NBA)
 2.1.2.4 12-O-tetradecanoyl phorbol 13-acetate (TPA)
 2.1.3 Reviving and culturing of cells
 2.1.4 Cell count and viability test
 2.1.5 Induction of cells
 2.1.6 Harvesting of induced cells
 2.1.7 Serum samples
 2.1.8 Immunofluorescence assay (IFA) for anti-EBV antibodies

2.2 Multipin Peptide Synthesis
 2.2.1 Multipin peptide synthesis kit
 2.2.2 Synthesis procedures

2.3 Multipin Enzyme-Linked Immunosorbent Assay (ELISA)
 2.3.1 Solutions
 2.3.1.1 Phosphate buffered saline (PBS)
 2.3.1.2 Pre-coat buffer
 2.3.1.3 Conjugate diluent
 2.3.1.4 Substrate buffer solution
 2.3.1.5 O-phenylenediamine (OPD) substrate solution
 2.3.1.6 Disruption buffer
 2.3.2 Serum samples
 2.3.3 Multipin enzyme-linked immunosorbent assay (ELISA)

CHAPTER 3: RESULTS

3.1 Serum Samples
3.2 Immunofluorescence Assay (IFA) for Anti-EBV Antibodies
3.3 Titres and Distribution of Anti-EBV Antibodies
 3.3.1 Anti-EBV antibodies with respect to sex
 3.3.2 Anti-EBV antibodies with respect to ethnic groups
 3.3.3 Anti-EBV antibodies with respect to age groups
3.4 Determination of Cut-off Titres and Geometric Mean Titres
3.5 Comparison of Anti-EBV Serological Markers
3.6 Anti-EBV Serological Profiles
3.7 Multipin Peptide Synthesis of EBV BHRF1 Protein
 3.7.1 Multipin BHRF1 peptide ELISA
 3.7.2 IgA linear epitope of BHRF1 in NPC
CHAPTER 4: DISCUSSION
4.1 Incidences of NPC in Sarawak 79
4.2 Detection of Anti-Epstein-Barr Virus Antibodies 81
 4.2.1 Anti-EBV antibodies in NPC patients with respect 81
to sex, ethnic groups and age
 4.2.2 Sensitivity and specificity of anti-EBV antibody assays 82
 4.2.3 Evaluation of anti-EBV antibody profile 85
4.3 Epitope Analysis of EBV BHFR1 Protein 88

CHAPTER 5: CONCLUSION 90

REFERENCES 91

APPENDICES 112
<table>
<thead>
<tr>
<th>Table No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1</td>
<td>Population estimate by ethnic group.</td>
<td>4</td>
</tr>
<tr>
<td>Table 1.2</td>
<td>EBV-specific antigens and immunological response in patients with EBV-associated disease (Tam & Murray, 1990; Tam, 1991).</td>
<td>24</td>
</tr>
<tr>
<td>Table 1.3</td>
<td>Sensitivity and specificity of IgA/VCA in the diagnosis of NPC.</td>
<td>25</td>
</tr>
<tr>
<td>Table 1.4</td>
<td>Potential individual polypeptides of the antigen complexes of EBV for the diagnosis of NPC.</td>
<td>28</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Distribution of sera by sex.</td>
<td>49</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Distribution of sera by ethnic group.</td>
<td>50</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Distribution of sera by age group.</td>
<td>50</td>
</tr>
<tr>
<td>Table 3.4</td>
<td>Titres of IgA/VCA in NPC and non-NPC controls.</td>
<td>53</td>
</tr>
<tr>
<td>Table 3.5</td>
<td>Titres of IgG/VCA in NPC and non-NPC controls.</td>
<td>54</td>
</tr>
<tr>
<td>Table 3.6</td>
<td>Titres of IgA/EA in NPC and non-NPC controls.</td>
<td>55</td>
</tr>
<tr>
<td>Table 3.7</td>
<td>Titres of IgG/EA in NPC and non-NPC controls.</td>
<td>56</td>
</tr>
<tr>
<td>Table 3.8</td>
<td>GMTs and significance values between NPC and non-NPC controls.</td>
<td>57</td>
</tr>
<tr>
<td>Table 3.9</td>
<td>Geometric mean titre (GMT) and p value of anti-EBV antibodies in NPC patients with respect to sex.</td>
<td>58</td>
</tr>
<tr>
<td>Table 3.10</td>
<td>Geometric mean titre (GMT) of anti-EBV antibodies in NPC patients with respect to ethnic groups.</td>
<td>60</td>
</tr>
<tr>
<td>Table 3.11</td>
<td>Geometric mean titre (GMT) of anti-EBV antibodies in NPC patients with respect to age groups.</td>
<td>63</td>
</tr>
<tr>
<td>Table 3.12</td>
<td>Comparison of sensitivity and specificity of anti-EBV antibodies at different cut-off titres.</td>
<td>65</td>
</tr>
<tr>
<td>Table 3.13</td>
<td>Percentage of positivity and GMT of EBV serological markers in NPC and non-NPC controls.</td>
<td>66</td>
</tr>
</tbody>
</table>
Table 3.14: Anti-EBV serological profiles of NPC samples. 71
Table 3.15: Sensitivity and specificity of different combinations of 2 anti-EBV antibodies 71
Table 3.16: Major EBV BHRF1 peptides reactive with IgA in NPC sera. 77
Table 4.1: Various cut-off titre of EBV measured by IFA. 83
Table 4.2: Percentage of negative IgA/VCA titre in NPC confirmed patients. 86
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1: The various states in Malaysia.</td>
<td>3</td>
</tr>
<tr>
<td>Figure 1.2: Herpesvirus structure and morphology (Ackermann & Berthiaume, 1995).</td>
<td>12</td>
</tr>
<tr>
<td>Figure 1.3: The structure of the Epstein-Barr virus genome with selected genes expressed during lytic and latency cycle (Cohen, 1997).</td>
<td>15</td>
</tr>
<tr>
<td>Figure 1.4: Solid phase peptide synthesis: a cyclical, three-step process.</td>
<td>31</td>
</tr>
<tr>
<td>Figure 2.1: The amino acids residues of BHRF1 protein. The alphabets represent single letter abbreviation for amino acids.</td>
<td>39</td>
</tr>
<tr>
<td>Figure 2.2: The Multipin Peptide Synthesis Kit (Chiron, Australia).</td>
<td>40</td>
</tr>
<tr>
<td>Figure 2.3: The numbering system of reaction tray.</td>
<td>41</td>
</tr>
<tr>
<td>Figure 3.1: Positive immunofluorescence assay (IFA) staining of IgA/EA with Raji cells (Magnification X200).</td>
<td>52</td>
</tr>
<tr>
<td>Figure 3.2: Negative immunofluorescence assay (IFA) staining of IgA/EA with Raji cells (Magnification X200).</td>
<td>52</td>
</tr>
<tr>
<td>Figure 3.3: Distribution of IgA/VCA titres in NPC and non-NPC controls.</td>
<td>53</td>
</tr>
<tr>
<td>Figure 3.4: Distribution of IgG/VCA titres in NPC and non-NPC controls.</td>
<td>54</td>
</tr>
<tr>
<td>Figure 3.5: Distribution of IgA/EA titres in NPC and non-NPC controls.</td>
<td>55</td>
</tr>
<tr>
<td>Figure 3.6: Distribution of IgG/EA titres in NPC and non-NPC controls.</td>
<td>56</td>
</tr>
<tr>
<td>Figure 3.7: GMT of anti-EBV antibodies by sex.</td>
<td>58</td>
</tr>
<tr>
<td>Figure 3.8: GMT of IgA/VCA by ethnic group.</td>
<td>60</td>
</tr>
<tr>
<td>Figure 3.9: GMT of IgG/VCA by ethnic group.</td>
<td>61</td>
</tr>
</tbody>
</table>
Figure 3.10: GMT of IgA/EA by ethnic group. 61
Figure 3.11: GMT of IgG/EA by ethnic group. 61
Figure 3.12: GMT of IgA/VCA by age group. 63
Figure 3.13: GMT of IgG/VCA by age group. 64
Figure 3.14: GMT of IgA/EA by age group. 64
Figure 3.15: GMT of IgG/EA by age group. 64
Figure 3.16: IgG/VCA and IgA/VCA titres in NPC samples. 67
Figure 3.17: IgG/VCA and IgA/EA titres in NPC samples. 68
Figure 3.18: IgG/VCA and IgG/EA titres in NPC samples. 69
Figure 3.19: Comparison of the mean absorbance between the conjugate test and 5 NPC sera. 72
Figure 3.20: BHRF1 peptide reactivity profile for 5 NPC sera and 1 control serum. 74
Figure 3.21: BHRF1 peptide reactivity profile of IgA antibodies in 3 NPC sera. 75
Figure 3.22: BHRF1 peptide reactivity profile of IgA antibodies in 2 NPC sera and 1 control serum. 76
Figure 3.23: The specific IgA antibody binding to BHRF1 peptides in NPC sera. 78
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix 1: Single letter abbreviation code for amino acids.</td>
<td>112</td>
</tr>
<tr>
<td>Appendix 2: Schedule for peptide synthesis generated by the pepmaker programme from Chiron. An overall aspect of the synthesis together with worksheet for Day 1 is shown.</td>
<td>113</td>
</tr>
<tr>
<td>Appendix 3: Demographic data and anti-EBV serology results of NPC group, using IFA on P3HR-1 and Raji cell lines.</td>
<td>117</td>
</tr>
<tr>
<td>Appendix 4: Demographic data and anti-EBV serology results of non-NPC control group, using IFA on P3HR-1 and Raji cell lines.</td>
<td>121</td>
</tr>
<tr>
<td>Appendix 5: Statistical tests.</td>
<td>125</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

< : Less than
> : Greater than
°C : Degree Celsius
µg : Microgram
µl : Microlitre
µm : Micrometer
BHRF : BamH1 fragment right reading frame
BL : Burkitt’s lymphoma
bp : Base pairs
DIC : Diisopropylcarbodiimide
DMF : N,N-dimethylformamide
DMSO : Dimethyl sulfoxide
DNA : Deoxyribonucleotide acid
EA : Early antigen
EA-D : Early antigen, diffuse component
EA-R : Early antigen, restricted component
EBER : Epstein-Barr virus encoded small nonpolyadenylated RNA
EBNA : Epstein-Barr virus nuclear antigen
EBV : Epstein-Barr virus
ELISA : Enzyme-linked immunosorbent assay
FITC : Fluorescein isothiocyanate
F-moc : Fluorenlymethoxy carbonyl
g : Gram
GMT : Geometric mean titre
HHV4 : Human Herpes Virus 4
HLA : Human leukocyte antigen
HOBr : 1-hydroxybenzotriazole
IFA : Immunofluorescence Assay
IMR : Institute of Medical Research
Ig : Immunoglobulin
IM : Infectious mononucleosis
IR : Internal repeat
IU : International unit
kD : Kilodalton
LCLs : Lymphoblastoid cell lines
LMP : Latent membrane protein
LP : Leader protein
M : Molar
MA : Membrane antigen
mg : Miligram
ml : Millilitre
mRNA : Messenger ribonucleic acid
NBA : Sodium butyrate
NKC : Non-keratinizing carcinoma
NPC : Nasopharyngeal carcinoma
OPD : o-phenylenediamine
PBS : Phosphate buffered saline
RNA : Ribonucleotide acid
rpm : Revolutions per minute
RPMI : Rosewell Park Memorial Institute Medium
RTU : Radiotherapy Unit
SSC : Squamous cell carcinoma
TFA : Trifluoroacetic acid
TPA : 12-o-tetradecanoyl phorbol 13-acetate
TR : Terminal repeats
UC : Undifferentiated (anaplastic) carcinoma
UCNT : Undifferentiated carcinoma of nasopharyngeal type
UL : Unique long sequence
US : Unique short sequence
VCA : Viral capsid antigen
WHO : World Health Organisation
ZEBRA : BamHI Z Epstein-Barr virus replication activator