SYSTEM ANALYSIS

CHAPTER 3 SYSTEM ANALYSIS

3.1 Performance Requirements
Any strong authentication protocols are considered to have all of the following
characteristics. E-PAP which is discussed in this dissertation has met all goals and

have other desirable characteristics which is explained later.

3.1.1 Provide Mutual Authentication

Unilateral authentication is an entity authentication that provides one entity with
assurance of the other’s identity but not vice versa, such as a log on in a telnet
system. To provide strong authentication, unilateral authentication is not enough.
Mutual authentication is desirable, which provides both entities with assurance of
each other’s identity. Besides, it must also prove to each of two parties that the other
knows the password. For a better system, it should achieve zero-knowledge mutual
authentication, which means prove that each entity knows a small secret (password),

without revealing it to each other.

3.1.2 Prevent On-Line Dictionary and Brute-Force Attack

On-line dictionary can be easily detected by counting access failures. A system may

log any from regi d users, y users or others that successfully

or unsuccessfully provide a correct password.

3.1.3 Prevent Off-Line Dictionary and Brute-Force Attack

Off-line dictionary attack and brute-force attacks presents a more complex threat.
These attacks can be made by someone posing as a legitimate entity to gather
information, or by one who monitors the messages between two parties during a

valid exct Even tiny of information “leaked” during an

exchange can be exploited. The method must be immune to such off-line attack, even

for tiny passwords [39].

42

SYSTEM ANALYSIS

3.1.4 Integrated Key Exchange

Integrated key exchange is desired because if separate steps of authentication and
key exchange will create opportunities for an attacker in the middle. Strong key
exchange requires the participation of both parties, and should be an integral part of
the process [39].

3.1.5 No Persistent Recorded Secret or Sensitive Host-Specific Data

No persistent recorded data means the user needs no additional symmetric, public, or
private keys, and this will simplify the user's side of the system as well as make the
password an independent factor. If a system requires persistent that data be
generated, distributed, and securely stored, this will pose additional problems. The
same problem will also occurr if a system requires specially protected memory where
it weakens the security model by adding another point of failure. Secret data must
never be revealed, and non-secret sensitive data must be kept tamper-proof. Systems
where the security of a password depends on a stored key are easily constructed, but
they just move the basis of security from the password to the key. If the key is stolen,

the password can be compromised. By eliminating p keys, this will also

remove the above problems [39].

3.1.6 Forward Secrecy

does not help him to

Forward secrecy means ling the p d to an
obtain any information such as session keys of past sessions. A stolen session key

also does not help an attacker to carry out a brute-force attack on the password [5].

3.2 Obsolete Password Method

After ining strong authentication requi this section investigates some

obsolete password methods.

43

SYSTEM ANALYSIS

3.2.1 Clear password

Clear password is still predominant in the Internet today, as in telnet password, ftp
password, Basic Access Authentication and any password sent in an unencrypted
session. The protocol is simple: Alice (the user or client) sends Bob (the host or
server) her username and her plaintext password. Bob verifies the password cither by
comparing it directly to his version of Alice’s password or applying a function
(normally one-way function) first and checking it against a database of stored hashes.

These are vulnerable to easy sniffing attacks.

An example of clear password method is Basic Access Authentication scheme [10]
that is used in “HTTP/1.0” [20]. Typically, it requires a username and a password for
authentication. Files on the server contain a list of users, passwords and groups,
passwords are stored in an encrypted form. When the server receives a request for a
document that is protected by basic authentication, it sends an “authentication
required” message back to the client. The browser then prompts the user for a name
and a password in a dialog box (Figure 3-1). The client resubmits the request with
the username: password in the authentication line. Basic Access Authentication
scheme is not considered as a secure method of user authentication as the user name
and password are passed over the network in clear text. Therefore they are easily

“sniffed”.

? Please type your user name and password.
$ Site: www.super7 net

Realm www.super7.net

User Name Ilesl

Password ['

™ Save this password in your password list

Figure 3-1: Basic Authentication

44

SYSTEM ANALYSIS

3.2.2 Scrambled password

This method simply obscure the password, using some well-known or easily

discoverable method. They are not significantly stronger than a clear password.

3.2.3 Challenge/Hashed-Random Response (CHRAP)

Many variations of hash-based challenge response schemes have been used since the
early 1980s. Some are better than others, and all are better than clear-text password
and scrambled password. However, all CHRAP methods are open to dictionary or
brute-force attack when the password is small or not-so-random. This approach has
been used in RPC (remote procedure control) based system like NetWare 3, Banyan
VINES, Microsoft’s LAN Manager for Windows NT4, CRAM (Challenge-Response
Authentication Mechanism), PPP CHAP (Challenge-Handshake Authentication
Protocol), and HTTP Digest authentication for HTTP/1.1.

The Digest Access Authentication scheme [10] which is used in “HTTP/1.1” [21]
and supported by Microsoft Internet Information Server (IIS) version 5 in Windows
2000 is not intended for the need for security in the World Wide Web. Digest
Authentication offers the same features as Basic Authentication but involves a
different method for transmitting the authentication credentials. The authentication
credentials pass through a one-way process, often referred to as hashing. The result
of this process is called a hash, or message digest, and the original text cannot be
deciphered from the hash [11].

Like the Basic Access Authentication, the Digest scheme is based on a simple
challenge-response paradigm. This scheme does not provide encryption of message
content. The intent is simply to create an access authentication method that avoids
the most serious flaws of Basic Authentication. Below are attacks that have been

considered for digest authentication [36]:

e Person-in-the-middle

45

SYSTEM ANALYSIS

A person in between the server and the client cannot forge a request for
another object or modify the request in any significant manner. However, it is
currently possible for a person in the middle to modify the reply since these
are not currently signed [36].

o Analysis of password file leading to compromised security
The security of this mechanism depends entirely on the security of the

will a pi d file that is

password file, as this
plaintext equivalent to password. If a third party reads this then access is
effectively granted even though the password itself is safe [36].

3.2.4 Kerberos Logon

Like other general failure of many obsolete password methods, Kerberos logon
presumes that passwords have to be large. Here's a simple example of a bad way for
Alice to verify that Bob knows a small password, S. Alice sends a random nonce R to
Bob, and Bob returns Q = A(R, S) to prove that he knows S. /() is a one-way hash of
the nonce combined with the password, which is stored in /etc/passwd (for
UNIX system) as a password file which is plaintext-equivalent (Section 2.2.2). But
because the space is searchable with brute force, an eavesdropper can perform a
dictionary attack by repeatedly computing A(R, Si) for each candidate password Si
and compares the result to Q. A possible solution is to restrict access to the file

/etc/passwd.

In Kerberos V4 and V5, a password encrypts an initial ticket. The data contained in
the ticket allows a “verifiable text” dictionary attack [12]. The V4 method is even
weaker than chall P since a dictionary attack can be performed by

anyone who simply asks for a Ticket-Granted-Ticket (TGT) at any time. Even with
the addition of ti based pi hentication in Kerberos V5, which is also

used in Windows 2000, the protocol is still vulnerable to dictionary and brute-force

attack by an eavesdropper. The key distribution server encrypts its initial response

packet using a key derived from a user’s password. An attacker may record such a

packet and attempt to decrypt it using keys derived from a series of guesses as to the

password. The attacker is able to determine whether his guess is correct or not as a
46

SYSTEM ANALYSIS

correct guess will produce recognizable data, such as the name of a network service

or the time of day.

3.2.5 S/Key
There are two sides to the operation of the S/KEY one-time password system. On

the client side, the appropriate time p: d must be g d. On the host

side, the server must verify the one-time password and permit the secure changing of

the user's secret pass-phrase.

An S/KEY system client passes the user's secret pass-phrase through multiple
applications of a secure hash function to produce a one-time password. On each use,
the number of applications is reduced by one. Thus, a unique sequence of passwords
is generated. The S/KEY system host verifies the one-time password by making one
pass though the secure hash function and comparing the result with the previous one-

time password. This technique was first suggested by Leslie Lamport [44].

Implementation of the S/Key scheme would break the idempotence of the HTTP
protocol. In addition, problems arise when a client sends multiple requests to the
same server, which are processed, out of order. Another difficulty is that the shared
secret can only be used a limited number of times. In a session-based protocol such
as telnet this is not a problem since logins are infrequent. In the context of HTTP/1.0
this is a major disadvantage since a user may perform many hundred operations a

day thus requiring key changes on a weekly or even daily basis [36].

Concern should also be raised about the applicability of certain hash methods with
the S/Key scheme, if the hash function should contain a strange attractor to either a
fixed point or a cycle of fixed points, an attack might be possible. The mathematical
property of recursive application of hash functions for very high orders is not known.

Such a system should certainly be considered with caution.

47

SYSTEM ANALYSIS

S/Key addresses a different problem, in that it can be used in conjunction with
programs originally designed to accept only clear-text password. But S/Key alone

cannot solve the eavesdropper dictionary attack against small password.

3.2.6 SecurlD

SecurlD (Figure 3-2) is a two-factor authentication system, which includes
something you know and something you have, developed and sold by Security
Dynamics [41]. It is generally used to secure either local or remote access to
computer networks. Each SecurlD user has a memorized PIN or password, and a
hand-held token with a LCD display. The token displays a new pseudorandom value,
called the tokencode, at a fixed time interval, usually one minute. The user combines
the memorized factor with the tokencode, either by simple concatenation or entry on
an optional keypad on the token, to create the passcode, which is then entered to gain

access to the protected resource.

Figure 3-2: SecurlD

The SecurlD token is a battery powered, hand-held device containing a dedi

microcontroller. The microcontroller stores in RAM, the current time, and a 64-bit
seed value that is unique to a particular token. At the specified interval, the seed
value and the time are combined through a proprietary algorithm stored in the

microcontroller's ROM, to create the tokencode value.

48

SYSTEM ANALYSIS

An authentication server verifies the passcodes. The server maintains a database,
which contains the seed value for each token, and the PIN or password for each user.
From this information, and the current time, the server generates a set of valid

passcodes for the user and checks each one against the entered value.

SecurID and most two-factor sy were not designed to solve the small password

problem. In this case, the security of the system relies on the secrecy of a key stored
in the SecurID card. It also relies on a memorized password, in case the card is
stolen. While the small password does help verify a human presence, the password
method remains a weak link. Using a stolen card, an informed attacker who has
monitored a SecurID session with the card can mount an attack on the password and

use the card himself.

3.2.7 Clear Password Over An SSL Signed Channel

The use of digital si in web b s has created a new style of

hentication that is b ing widely used. But the one-way nature of digital

signatures enables a variety of identity or “name spoofing” attacks. One should
recognize that this is still just a stored-key method authenticating two machines. It

does not verify a human p Sending a clear p d over an SSL connection
adds to the threat of name spoofing attacks and cannot provide reliable prove that the

right Alice is talking to the right Bob [33].

Besides that, authentication is needed at the application level in the long-term. SSL
also requires a new proxy protocol because of current proxy implementation
(Version 1.1) has a weak routine for seeding random number generator which creates
session keys that are guessable. User may also need to take care when sending clear
password over SSL channel where

o User might not check SSL icon (Figure 3-3).

e User might not check certificate. The certificate may have expired or is not

yet valid (Figure 3-4).
e User might not notice a misspelled name of URL that may cause server-

spoofing attacks.
49

SYSTEM ANALYSIS

o Navigator 3.0 and Communicator 4.x have an option to allow on-disk caching

of data fetched over SSL connections.

Furthermore, there are several other network layer security proposals like
Microsoft’s Private Communication Technology (PCT) or Secure HyperText

Transfer Protocol (SHTTP) [32] which are not compatible with each other.

v 3D @ I3AD W F

" Bookmaks & [I s Rt

O —— NP

Figure 3-3: SSL icon for Netscape Communicator

50

SYSTEM ANALYSIS

Generel | Details | Ceriication Path |

E—’g Centificate Information

This certificate has expired or is not yet valid.

Issued to: VeiSign Class 2 CA - Individual Subscriber

Issued by: Class 2 Public Primary Certification Authority

Valid from 27/6/19% to 28/6/1339

Figure 3-4: An expired certificate for Internet Explorer 5

An SSL server certificate contains two pieces of data of potential security interest:
the name of the keyholder (usually a corporate name) and the DNS name for the
server. There are authorities on DNS name assignments, but none of the SSL. CAs
listed in the popular browsers is such an authority. That means that the DNS name in
the certificate is not an authoritative statement. There are authorities on corporate
names. These names need to be registered when one gets a business license.
However, none of th;: SSL CAs listed in the browsers is such an authority. In
addition, when some server holds an SSL server certificate, it has permission to do
SSL. Who granted the authority to an SSL CA to control that permission? Is the
control of that permission even necessary? It serves an economic purpose
(generating an income stream for CAs) but does it serve a security purpose? What
harm is done if an uncertified server were allowed to use encryption? The answer is

none [33].

51

SYSTEM ANALYSIS

Does the proper use of these certificates require user actions? Do users perform

those actions? For example, when a user blishes an SSL ion with his

browser, there's a visual indication that the SSL protocol worked and the link is
encrypted. But whom is the user talking securely with? Unless the user take the
time to read the certificate that he received [33].

3.3 Key-Exchange Algorithms

After di
exchange algorithm, which is core of E-PAP System.

obsolete p: d hods, this section discusses some key-

-}

3.3.1 Diffie-Hellman

The Diffie-Hellman (DH) key agreement protocol (also called exponential key
agreement) was developed by Diffie and Hellman in 1976. DH was the first public-
key algorithm ever invented. The protocol allows two users to exchange a secret key

over an insecure medium without any prior secrets.

The math is simple. First, Alice and Bob agree on a large prime number p and g
(usually called a generator), which is an integer less than p, with the following
property: for every number n between 1 and p-1 inclusive, there is a power k of g
such that g* = n mod p.

Then, the protocol goes as follow:

Notation:

X, y = random large integer

52

SYSTEM ANALYSIS

Alice Bob

X=g"'modn

Y =g"modn

k=Y modn k' =X mod n

Figure 3-5: Diffie-Hellman

Alice and Bob then compute & and &’ respectively where both k and k' are equal to
g% mod n. Eve listening on the ct 1 can not pute that value; she only knows

n, g, X and Y. She can not solve the problem unless she can compute the discrete
logarithm and recover x or y. Therefore, £ is the secret key that both Alice and Bob

computed independently.

However, the Diffie-Hellman key exchange by itself does not provide authentication
and is vulnerable to a man-in-the-middle attack. In this attack, an opponent Carol
intercepts Alice's public value and sends her own public value to Bob. When Bob
transmits his public value, Carol substitutes it with her own and sends it to Alice.
Carol and Alice thus agree on one shared key and Carol and Bob agree on another
shared key. After this exchange, Carol simply decrypts any messages sent out by
Alice or Bob, and then reads and possibly modifies them before re-encrypting with
the appropriate key and‘transmitting them to the other party. This vulnerability is
present because Diffie-Hellman key exchange does not authenticate the participants.
Possible solutions include the use of digital signatures and other variant protocols

like Station-to-Station (STS) protocol Encrypted Key Exchange.

In recent years, the original Diffie-Hellman protocol is understood to be an example
of a much more general cryptographic techni the ! being the

derivation of a shared secret value (or key) from one party's public key and another
party's private key. The parties' key pairs may be generated anew at each run of the

protocol, as in the original Diffie-Hellman protocol. The public keys may be
53

SYSTEM ANALYSIS

certified, so that the parties can be authenticated and there may be a combination of
these attributes. The draft ANSI X9.42 illustrates some of these combinations, and a
recent paper by Blake-Wilson, Johnson, and Menezes provides some relevant

security proofs [7].

3.3.2 Station-to-Station Protocol

The authenticated Diffie-Hellman key agreement protocol, or Station-to-Station
(STS) protocol, was developed by Diffie, van Oorschot, and Wiener in 1992 to
defeat the man-in-the-middle attack on the Diffie-Hellman key agreement protocol.
The immunity is achieved by allowing the two parties to authenticate themselves to

each other by the use of digital signatures and public key certificates.

Roughly speaking, the basic idea is as follows. Prior to the execution of the protocol,
the two parties Alice and Bob each obtains a public/private key pair and a certificate
for the public key. During the protocol, Alice computes a signature on certain
messages, covering the public value g a mod p. Bob proceeds in a similar way. Even
though Carol is still able to intercept messages between Alice and Bob, she cannot
forge signatures without Alice's private key and Bob's private key. Hence, the
enhanced protocol defeats the man-in-the-middle attack

3.3.3 Encrypted Key Exchange (EKE)

Encrypted Key Exchange (EKE) protocol was designed by Steve Bellovin and
Michael Merritt [14]. It provides security and authentication on computer networks
by using both symmetric and public-key cryptography in a novel way. The basic idea
is a shared secret key is used to encrypt a randomly generated public key.

Table 3-1: Notation for EKE protocol.

A B System principals. (Alice and Bob).
N The password: a shared secret, often used as a key.
Y(info) Symmetric (secret-key) encryption of “info” with key Y.

54

SYSTEM ANALYSIS

Y(info) Symmetric (secret-key) decryption of “info” with key Y.
EX) Asymmetric (public-key) encryption of X with (public) key £
challenges | A random challenge generated by 4.

challengep A random challenge generated by B.

p A huge prime numbers suitable for Diffie-Hellman

q A large prime factor of p-1
A>B:m Alice sends m to Bob

Alice and Bob share a common password, S. Using this protocol, they can

authenticate each other and generate a common session key, K.

1. A generates a random public key £, and encrypts it in a symmetric
cryptosystem with key S to produce S(E4).
APB: A, S(Ey
This message includes her name in the clear.
Sharing the password S, B decrypts to obtain £, generates a random secret key R,
and encrypts it in both the asymmetric cryptosystem with key E4 and in the password
key to produce S(E4(R)).
B2A4: S(E4(R))

hall. hall.

2. A decrypts the message to obtain R, a unique g€

and encrypts it with R to produce R(challenge,).

A?B: R(challenge,)

hall

3. B decrypts the to obtain challenge, a unique
challengep and encrypts the two challenges with the secret key R to obtain
R(challenge,, challengep).

BA: R(challenge,, challengep)

4. A decrypts to obtain challenge 4 and challengep and p the former
against her earlier chall If it hes, she encrypts challengey with R to
obtain.

A 2B: R(challengep)
T ss

SYSTEM ANALYSIS

S. If the challenge-response protocol in steps 1 to 5 is successful, logon is
successful and the parties proceed with the logon session, using the

symmetric cryptosystem and session key R for protection.

The challenge-response portion of the protocol, in steps 3 to5 is a standard technique
for validating cryptographic keys. (If a party sends challenge c¢ encrypted by R,
where ¢ was never used before, and receives another encrypted message containing ¢

in reply, it follows that the message originator has the ability to encrypt messages

with R.) This portion of the protocol could be replaced by other hani for
validating R. For example, the time could be exchanged encrypted by R, under the
security-critical assumption that clocks are ic and synchronized, as in
Kerberos [38].

3.4 Simple Password-Authenticated Exponential Key Exchange

Simple Password-Authenticated Exponential Key Exchange (SPEKE) [39] is a
authenticated key exchange. It uses DH key-exchange algorithm to protect the
password from off-line dictionary attack and uses a password to prevent standard DH
man-in-middle attack as discussed in 3.3.1. The basic idea for SPEKE is two parties
who share only a small password P, perform mutual authentication over insecure
network, such as the Internet, proving to each other their knowledge of P and

generating a new large session key K.

3.4.1 The Protocol

Table 3-2: Notation of SPEKE protocol

S A small shared password for Alice and Bob.

P A huge prime number suitable for Diffie-Hellman.

Q A large prime factor of p-1.

G A suitable DH base, either primitive, or of large prime order.

A The group of integers fron.1 1 to p-1, under multiplication
modulo p.

56

SYSTEM ANALYSIS

Gx A subgroup of Z,* of order x. X is a factor of p-1.
1S A function that converts S into a suitable DH base.

Ry Rp Random numbers chosen by Alice, and Bob.

Ou On Exponential values sent by Alice, and Bob.

Ex(m) A symmetric encryption function of m using key &.
h(m) A strong one-way hash function of m.
AB:m | Alice sends m to Bob.
K Generated session key.
First Stage

SPEKE has two stages that are integrated together. The first stage uses a DH

exchange to establish a shared key K, but instead of the commonly used fixed

primitive base g, a function f converts the password S into a base for exponentiation.

The rest of the first stage is pure Diffie-Hellman, where Alice and Bob start out by

choosing two random numbers R, and Rg:

1.

B N

Alice computes: Q4 = f{S)* mod p ADB: Q4
Bob computes: O = f{S)*8 mod p B 4: Qp
Alice computes: K = h(Q5" mod p)

Bob computes: K = h(Q,"8 mod p)

Second Stage
In the second stage of SPEKE, both Alice and Bob confirm each other's knowledge

of K before proceeding tg use it as a session key. One way is:

5.
6.
7.
8

. Bob verifies that Cp is correct.

Alice chooses a random Cj, ADB: Ex(Cy
. Bob chooses a random Cjp, B2A4: Ex(Cs, Cy)
Alice verifies that Cy is correct, A2B: Ex(Cy)

Alice and Bob only ‘belief” each other after step 8 complete.

57

SYSTEM ANALYSIS

3.4.2 Why is SPEKE used?

Recently, there are a few cryptographic protocols to negotiate an authenticated
cryptographic key based on a small shared secret without revealing anything else

about the small shared secret, like Simple P: d-Authenticated Exp ial Key
Exchange (SPEKE) [39], Secure Remote Protocol (SRP) [19], Augmented Encrypted
Key Exchange (AEKE) [15] and Open Key Exchange (OKE) [60]. However, this
dissertation has chosen SPEKE as impl ion of E-PAP L of:

o SPEKE embeds the password in a Diffie-Hellman key exchange, the heart of

all public-key methods. By relying on the difficulty of the discrete-log
problem, SPEKE rests on the same foundation as all commercial public-key
methods. It provides 1000-bit protection for even 20-bit passwords (equal to a
pi d only 3.5 ct).

o There are no articles that can be found from the Internet regarding SPEKE
has been broken at this moment.

o A software developer’s toolkit, FreeSPEKE SDK is provided by Integrity
Sciences Inc., the inventor of SPEKE. This SDK is free for non-commercial,
academic and evaluation purposes.

o Entrust® Technologies, a global market and technology leader in Managed
PKI solutions, has licensed SPEKE for use in their public key infrastructure
(PKI) products [66]. This proves that SPEKE is strong enough for

commercial use.

58

