DESIGN AND IMPLEMENTATION

CHAPTER 4 DESIGN AND IMPLEMENTATION

4.1 Introduction

A part of the algorithm for the E-PAP System is adopted from FreeSPEKE SDK
version 1.02 [48] and SSLeay version 0.9.0b [49]. A client (E-PAP Client) and a

server (E-PAP Server) have been designed using Visual C++ version 6 which use

1 zero knowledge proof authentication. Table 4-1 is a

this algorithm to imp
technical specification for E-PAP System.

Table 4-1: Technical Specification for E-PAP System

Network Requirement TCP/IP support
Supported Platform Windows 95,
Windows 98,
Windows 98 SE,
Windows NT4 and
Windows 2000.
Supported Authentication Mechanism
Public Key Exp ial key from Exp ial Key
Exchange (EKE)
Secret Key Small shared secret between Client and
Server (password)
Supported Industry Standard
Hash SHA-1
Interface PKCS #5 and
GSS-API

4.2 Files Distribution

A whole E-PAP system consists of two parties, E-PAP Client and E-PAP Server.

Both parties are written in Visual C++ and will dynamically call functions in two

59

DESIGN AND IMPLEMENTATION

dynamic link library files, spekebn.dll and spekekit.dll. E-PAP Client has
one executable file client.exe and E-PAP Server has one executable file
server.exe, which handle client authentication function. Besides that, a user
credential files generator (generate.exe) is used to generate user credential. As E-
PAP Client is a Microsoft Foundation Class (MFC) application, three shared
dynamic link library files mfco42d.dll, mfc42d.dll and msvcrtd.dll are
needed for client execution.
[EPaP system |
|

P .

E-PAP Server Credential Generator E-PAP Client
l senverexe [[aemnI;x;_] [clentere J
SPEKE Dynamic Link Library SPEKE Dynamic Link Library
‘L‘npekem.&_m] [spekekitdi _]
l‘-ukm{.dl ' [spekebn.di J

Figure 4-1: E-PAP System files distribution.

4.3 Basic Concept

The client credentials for the API (Application Programming Interface) consist of a

username and a p. d, both rep d as null-termi d ct strings. The

client application establishes a joint security context with the server, using the name

and password credentials.

The server credentials consist of a password database. The credential files are stored
in a plain file with format of username . ver, where username is user’s logon name
and ver is the file extension. All the credential files should be located in a folder
only reachable by authorised administrator. E-PAP uses the server's knowledge of
the user's password verifier to prove the identity of the server to the client. This form

60

DESIGN AND IMPLEMENTATION

of mutual authentication is a unique feature of zero-knowledge password proofs,

which cannot be safely provided by ordinary challenge-hashed-resp hod:

The server appl

api d verifier database, in any desired format,

which contains a list of names and corresponding password verifiers.

4.4 E-PAP spekebn.dll Library

The spekebn.d11 file, which is stand for SPEKE Big Number, is modified from
SSLeay version 0.9.0b. SSLeay [49] is a Secure Socket Layer (SSL) implementation
written by Eric Young (eay@cryptsoft.com). The implementation was written to

conform with Netscape SSL. This library is free for and
use as long as conditions listed in the source-code are adhered to. The current version

of this library is available from http://www.ssleay.org.

BN is a large integer library. It supports all the normal arithmetic operations. It uses
malloc' extensively and as such has no limits of the size of the numbers being

manipulated. The RSA and DH libraries sit on top of this library.

This big number library was written for use in implementing the RSA and DH public
key encryption algorithms. This library uses dynamic memory allocation for storing
its data structures and so there are no limit on the size of the numbers manipulated by
these routines but there is always the requirement to check return codes from

functions just in case a memory allocation error has occurred.

The basic object in this library is a BIGNUM. It is used to hold a single large integer.
This type should be considered opaque and fields should not be modified or accessed
directly.

typedef struct bignum_ st
{
int top; //Index of last used d.

! malloc (memory allocation) is used to dynamically allocate memory at run time.
T o6l

DESIGN AND IMPLEMENTATION

BN_ULONG *d; //Pointer to an array of 'BITS®'
//bit chunks.
int max; //Size of the d array.
int neg;
} BIGNUM;

The big number is stored in a malloced array of BN_ULONG's. A BN_ULONG can be
either 16, 32 or 64 bits in size, depending on the “number of bits” specified in the
header file bn.h. d field is this array. max is the size of the d array that has been
allocated. top is the last entry being used, so for a value of 4, bn.d[0]=4 and
bn.top=1. The neg is 1 if the number is negative. When a BIGNUM is 0, the d field
can be NULL and top ==

Various routines in this library require the use of 'temporary' BIGNUM variables
during their execution. Due to the use of dynamic memory allocation to create
BIGNUMSs being rather expensive when used in conjunction with repeated subroutine
calls, the BN_CTX structure is used. This structure contains BN CTX BIGNUMSs,
BN_CTX is the maximum number of temporary BIGNUMs any publicly exported

function will use.

#define BN_CTX 12
typedef struct bignum_ctx

{ :
int tos; //top of stack

BIGNUM *bn[BN_CTX]; //The variables
} BN_CTX;

For a more detail explanation about big number library, please refer to “SSLeay
FAQ” [47].

4.5 E-PAP spekekit.dll Library -

FreeSPEKE SDK is an open source code and software developer's toolkit that

provides strong password authentication for client/server applications. It uses the

DESIGN AND IMPLEMENTATION

SPEKE™ cryp
authenticated session key to protect the integrity of client/server messages.
FreeSPEKE is provided in a highly modular form that enh portability, and

protocol to authenti a user, and negotiate a mutually

provides freely exportable source code. This open source format facilitates analysis,

evaluation and experimental implementation of SPEKE and related methods.

SPEKE is a cryptographic method that protects passwords and related small secrets
that are used to authenticate people over a network. It is, in fact, one of the strongest
known methods for performing a zero-knowledge proof of knowledge. SPEKE is
currently patent-pending, and Integrity Sciences has a very reasonable policy for
licensing commercial use of the FreeSPEKE SDK, as well as any other
implementations of SPEKE [48].

The spekekit.d1l file, which stands for SPEKE Kit, is adopted from FreeSPEKE
SDK version 1.02. There are six main routines for spekekit.dll, and they are
summarized in Table 4-2. The detail description of FreeSPEKE API can be found in
http://www.freespeke.com.

Table 4-2: FreeSPEKE Routines

C Routine Function

SpekeNewContext Creates a new context for a session

SpekeDeleteContext | Deletes a context

SpekelnitServer . | Initializes a SPEKE server.

SpekelnitClient Initializes a SPEKE client.

SpekeReleaseBuffer | Releases a token assigned by a FreeSPEKE function.
SpekelnitBuffer Initializes a token to be assigned by FreeSPEKE.

The SpekeNewContext function creates a new uninitialized context, and is the first
step in establishing a session. A call to this function is typically followed by several
calls to Init function like SpekelnitClient or-SpekelnitServer, which establish and

negotiate the shared information that makes up the security context. These functions

63

DESIGN AND IMPLEMENTATION

are used to perform the SPEKE handshake, which provide mutual authentication

between client and server, and establishes an authenticated session key.

Each Init function can return a token, which the calling client or server application
must send to its peer, and the peer in turn passes the token to its Init function. After
Init decodes a token, it may tell the application to send another token to continue the
process of context establishment. Eventually, the Init calls on both sides tell each

dchake i 1

e is p and whether or not it was successful.

when the h

At the end of a session, client and server appli each call SpekeDeleteContext

to delete the security context. After performing mutual auth for sub:

q

communication, FreeSPEKE provides additional functions to:
e create a message authentication code (MAC), which provides integrity
p ion and origin authentication for the and

o verify a MAC for a message created by the peer application.

FreeSPEKE treats messages as arbitrary byte arrays. The transmitting application
calls the SpekeCreateMAC routine to create 8 MAC token for a message, using the
security context, and typically sends the MAC token along with the message to the
receiving application. The receiver passes the message and MAC tokens to the
SpekeVerifyMac function that validates the data.

The hentication function used is the HMAC-SHAI construction [53].
The construction is simitar to that used in PKCS #5 [54], except that the negotiated
SPEKE key is used in the key for the hash to prevent brute-force attacks. The
FreeSPEKE API is much simpler than GSS-API [65], but provides its functionality

in a similar manner. The API provides an abstract way to authenticate and negotiate a

security context for a session and to authenticate messages based on the security

context.

64

DESIGN AND IMPLEMENTATION

4.6 E-PAP Server

E-PAP Server (server.exe) has a default port number 51688 that has been chosen
arbitrarily by author. RFC 1700 [59] contains a list of port number assignments from
the Internet Assigned Numbers Authority (IANA). The port numbers are divided into
three ranges:

o The well-known ports: 0 through 1023. These port numbers are controlled
and assigned by the IANA. For example, port 80 is assigned for a Web
server, port 21 is assigned for a FTP server.

o The registered ports: 1024 through 49151. These are not controlled by the
IANA, but the JANA registers and lists the uses of these ports as a

to the ity. For le, ports 6000 through 6063 are

assigned for an X Window server.

o The dynamic or private ports: 49152 through 65535. The IANA says nothing
about these ports. As a result, E-PAP Server has arbitrary chosen port number
51688.

An E-PAP Client which wants to establish a connection with a E-PAP Server have to
connect through the server host name and this default port number. The server host
name is used to resolve IP address for the server. The two values that identify server
and client - an IP address and a port number, are often called a socker [58]. The
socket pair for a connection is the two endpoints of the connection: the local IP
address, local port, foreign IP address and foreign port. A socket pair uniquely

identifies every connection on a network.

E-PAP Server will handle all client authentication by opening a listening socket,
accept connections, read user logon name, lookup user’s verifier, perform E-PAP
handshake (Refer to Figure 4-9) to authenticate and initiate a session and process

henticated Remote Procedure Call (RPC) (Refer to Figure 4-10). If a user wants to

change his/her password, he/she must be authenticated first, then create a new

credential with the new password and sends the credential to E-PAP Server (Refer to
Figure 4-5). The main routines for E-PAP Server have been described in Section
4.62104.6.7.

65

DESIGN AND IMPLEMENTATION

Two simple audit log files (E-PAP System Invalid Password Log and E-PAP System
Invalid User Log) have been added to increase E-PAP Server performance and
security. The log files are in plain text format with filename logxpw.txt and
logxuser.txt respectively. The former is used to log any invalid password to
prevent online brute-force attack and the latter is used to prevent any possible timing-
based name guessing attack. Both log files will capture

¢ logon date,

e logon time,

e client’s IP address,

e port number and

e attempt logon name.

There are no maximum file size limit for current the version and the log files will be
cleared manually when required. Besides that, E-PAP Server is able to reject any
request from a particular client IP address. E-PAP Server will block any IP addresses

that have been added in file blockIP. txt.

4.6.1 Requirements

The system requirements that are needed to install the E-PAP Server are shown in
Table 4-3. The main routines for E-PAP Server have been described in Section 4.6.2
t04.6.7. '

Table 4-3: Installation Requirement for E-PAP Server

Element Requirement
Processor Speed | PC with a 486/66 MHz or higher

processor (Intel Pentium 90 processor
and above recommended)

RAM 32 MB and above

Operating system | Windows NT 4 (SP3) and above

66

DESIGN AND IMPLEMENTATION

Network TCP/IP

Privileges Administrator or Root

Hard-disk space Approximately 1 MB
Code Visual C ++ 6.0 and above
Display VGA or higher resolution monitor

4.6.2 checkIP

int checkIP (
FILE* fin,

char* buf

Purpose:
Reject any request from particular client IP address that has been added in

blockIP.txt to prevent attacks.

Parameters:

fin Open the file *fin (blockIP. txt)

buf Temporary buffer that read and compare
client IP address

Function value:

None.

4.6.3 processChangePw

int processChangePw (
char* buf

67

DESIGN AND IMPLEMENTATION

Purpose:
Process all password-changing requests from client.

Parameters:

buf Temporary buffer that store user logon

name and credential.

Function value:

None.

4.6.4 doServerHandshake

int doServerHandshake (
SOCKET newSock,
SpekeContextHandle handle,
SpekeToken * pVerifierToken

Purpose:
To initiate a secure context for a session with a client.

Parameters:
newSock New socket description.
handle - SpekeContextHandle
Context handle for the session
pVerifierToken SpekeToken
Token ining the user’s p: d
verifier
Function value:
SPEKE_COMPLETE Successful completion
SPEKE_CONTINUE_NEEDED Indicates that a token from the client is

68

DESIGN AND IMPLEMENTATION

required to complete the context, and
that SpekelnitServer must be called
again with that token.

SPEKE _E NO_CRED Consistency checks performed on the
password failed.

4.6.5 processAuthenticatedRPC

int processAuthenticatedRPC(
SOCKET newSock,
SpekeContextHandle handle

Purpose:
Get a message, and its MAC code, verify it and send a new MAC for the modified

reply.

Parameters:
newSock New socket description
handle SpekeContextHandle

Context handle for the session
Function values:
None

4.6.6 processNewConnection

int processNewConnection (
SOCKET newSock

69

DESIGN AND IMPLEMENTATION

Read user name, lookup user’s verifier, perform SPEKE handshake to authenticate

and initiate session, and p AuthenticatedRPC() test
Function values:
SPEKE_E _NO_CRED Consistency checks performed on the
password failed.

4.6.7 runServer

int runServer(

short port
)
Purpose:
Open a listening socket, accept i and p N ion() for each.
Parameters:
[ﬁn Port number

Function values:

SPEKE_E_NO_CRED Consistency checks performed on the
password failed.
SPEKE_SUCCESS Successful completion

4.7 E-PAP Client
E-PAP Client (client.exe) is used to authenticate itself to E-PAP Server (Figure

4-4) and to change user password (Figure 4-3). The main routines for E-PAP Client
have been described in Section 4.7.2 t0 4.7.7.

Some client program like telnet is in DOS_command prompt. Our aim users’
computer literacy may only have naive or novice skill, they may found the

command-line programs supported by DOS difficult to use. As a result, E-PAP
"0

DESIGN AND IMPLEMENTATION

Client program has a user-friendly Graphical User Interface (GUI). GUI is required

for best visual effect. The system should pi easy 2 ,
messages to help users use the system with more confidence.

Figure 4-2: E-PAP Client

4.7.1 Requirements

The system requirements that are needed to install the E-PAP Client are shown in
Table 4-4.

Table 4-4: Installation Requirement for E-PAP Client

Element Requirement
Processor Speed | PC with a 486/66 MHz or higher
processor (Intel Pentium 90 processor

and above recommended)
RAM 16 MB and above
Operating system | Windows 95 and above

N

DESIGN AND IMPLEMENTATION

Network TCP/IP

Privileges Basic access user

Hard-disk space Approximately 8 MB

Display VGA or higher resolution monitor

Y

Pointing device Mi ft mouse or

4.7.2 changePw

int CClientDlg::changePw
(
cstring name,

CString m_NewPassword

Purpose:
Use to change user password. Only password that allow by detectBadPw routine
(Section 4.7.3) can be chosen.

Parameter:
name User logon name.
m_NewPassword User new password

Function values:

None.

4.7.3 detectBadPw

int CClientDlg::detectBadPw
(
CString name,

cstring m_NewPassword

72

DESIGN AND IMPLEMENTATION

Purpose:
Use to detect bad-chosen password, includes:
o password consist of numeric only,

o password contains logon name,

e p d ins > 4 same ct

e p d ins > 4 following sequent ch and

o password contains a word from English dictionary.
Parameter:
name User logon name.
m_NewPassword User new password

Function values:

None.

4.7.4 doClientHandshake

int CClientDlg::doClientHandshake

(
SOCKET sock,
SpekeContextHandle * handle

Purpose:
Use to initiate secure context for session with server by swapping tokens until

SPEKE says we are done, or it fails.

Parameter:
sock Socket description
handle SpekeContextHandle

Context handle for the session

73

DESIGN AND IMPLEMENTATION

Function values:

SPEKE_SUCCESS Successful completion

SPEKE_CONTINUE_NEEDED Indicates that a token from the client is
required to complete the context, and that
SpekelnitServer must be called again
with that token.

4.7.5 authenticatedRPC

int CClientDlg::authenticatedRPC
(
SpekeContextHandle handle,
SOCKET sock,
CONST char * msg

Purpose:
Send a and it is corresponding MAC to the server and receive a MAC of the
modified reply.
Parameters:
handle . SpekeContextHandle
Context handle for the session
sock Socket description
msg Message to be sent to server

Function values:

None.

" 74

me

DESIGN AND IMPLEMENTATION

4.7.6 doClient

int CClientDlg::doClient
(
SOCKET sock

Purpose:
Initiate secure session and send a series of test messages.

Parameters:

sock Socket description

Functions values:

None.

4.7.7 runClient

int CClientDlg::runClient

(
char * cHostName,
char * sHostName,
int port

) .

Purpose:
To make TCP connection to server, and call doClient function.

Parameters:

cHostName Host name for client
sHostName Host name for server
port Port number

" 75

DESIGN AND IMPLEMENTATION

Function values:

None.

4.8 Procedure Sequence Flow Chart

The E-PAP system is divided into two major modules: change password module and
authentication module, which is shown in Figure 4-3 and Figure 4-4. For detail
procedure, refer to Figure 4-5 and Figure 4-8.

76

DESIGN AND IMPLEMENTATION

Accept / Reject

Generate
credential
Send credential
Store

credential file
Client

Figure 4-3: Change password module

Request to be authenticated
with logon name and password

Accept / Reject

A

Secure connection
>

Client

Figure 4-4: Authenticat{on module.

77

DESIGN AND IMPLEMENTATION

|

E-PAP Server E-PAP Client

mySetCreds(name,
— [password)

g—.sm -
[]

e
o]

— WA—/V':M Iﬂel\‘.l;>
~ P

FALSE N -
~
TRUE

ek

} Log Fm.sé‘{xm pulwov;/\ <& vm p.mm od
‘ -

B

o

Figure 4-5: Change password procedure flow between E-PAP Server and Client

78

DESIGN AND IMPLEMENTATION

Server: processChangePw() Client: changePw()

[mysamma(nnm:.]
[m_NewPassword)
_mewrasswore)

Receive logon end o
t name T - { Send logon name [

s e

‘ Store credential J

[
| 4
[P"'"'""““ ! \ F'n;nordammd |
""‘,','E!'f,ﬂ, R
l

e

Figure 4-6: Detailed p hangeP: d() and changeP d().

79

DESIGN AND IMPLEMENTATION

E-PAP Client

et . 1
__~""do New Password field
 (password) & Confirm Password ~>——No—p uert user fefype
. feldsame? pass ogain

~ _~

No
N
e T~
“doespassword consistof
numeric only? Yes
Yes

// "v’toupu-wovdwmﬂr‘n\
“~__ >4samecharacters?)
~ -

~~ / Yes
~

/'io;;pmofdeom-lm- ;:;R’\ Alert user to
< >—Yes- choose other
\‘\\l‘vomEnﬂmdcﬁoval/’,/ password
\\\\'//‘ e
No
— .
Generate credential]
-

Figure 4-7: Detailed detectBadPw() routine.
T80

DESIGN AND IMPLEMENTATION

| e [y

T% lﬂ*’f-tﬂ

B [o |
1

P—— [[omen]

| B

B A P N e
- - <
[Log }---FALSE—\(YnMpmord\) < Valid password -
) N r/ \\T/ /7/

TRUE TRUE

e o |
1 T
= N

Figure 4-8: Authentication procedure flow between E-PAP Server and Client

:

T8l

DESIGN AND IMPLEMENTATION

doServerHanshake() doClientHanshake()
Initiate secure swkoNM;xt()']
context for —
- session between ~ .
[yitTok en()‘; server and client L T,’,MT""’”(Z]

1 pe—
) v
' [Jo—
[wiﬂ- e "E}M?
fsv-*-'"lﬂ w..;?..’;;«;}
] o]

’, VrrvySsndTokm() "__,. —

[;okeRehneTokm() |

‘ "I:I;Mhlk Err -
< SPEKE CONTINUE /
- NEEDED

N

FAEE
[essmsrowe |
—

Figure 4-9: Detailed handshake flow between Server and Client.

82

DESIGN AND IMPLEMENTATION

Server gets a message and its
MAC code, verify it and send a
new MAC for modified reply

processAuthenticateRPC()

mylnitToken() ‘

T

g SpekelnitToken()
L

4

Client send a message and it's
corresponding MAC to the server
and receive a MAC of modified reply

AuthenticateRPC()

[me;r;okmo

L L 1

ez
L

L _—
))
v 2

| yReadrotenmac) 4
I ——

>
Fle

\‘ SpekecrnhMan‘b

—

v

!——— — + mmni';owi(m;;)
\
l

SpekeCreateMac())

mySendToken(mac) 1

.

[|

- IA_J
{m}a.g.'..;w m,a......'.};;.ﬂ
o e

4
R—

Figure 4-10: Detail Authenticated RPC flow between Server and Client

DESIGN AND IMPLEMENTATION

4.9 E-PAP Server Implementation

E-PAP Server involves
e two executable files (server.exe and generate.exe),
o two dynamic link libraries (spekekit.dll and spekebn.d11)and
e two audit log files (Logxuser. txt and logxpw. txt)

o one blocking IP file (blockIP. txt)

These files stored in a folder / directory that should be accessible only by the
administrator. To start E-PAP Server, an administrator has to type server in dos
command, dos prompt or click its shortcut on start menu, and administrator will be
prompted to provide a port number. Default port number for E-PAP Server is 51688.
To stop the server, the administrator has to press Ctrl + C.

The user credential files generator (generate.exe) is used to generate user
credential. To register a new user, the administrator have to type generate in dos
command prompt or click its shortcut on the start menu. After that, the administrator
will be prompted to provide a user logon name. That logon name will be registered in

user.txt file and a credential file with a password with eight alphanumeric

h that is domly d by system. The credential file will have

filename username.ver where username is the logon name and ver is the file
extension. That user will be informed of his/her logon name and password by the
administrator, and he/she may change his/her password by using an E-PAP Client.
Any invalid password and invalid user name from user / attacker will be captured in
logxpw. txt and logxuser. txt respectively. These log files will be automatically
generated and stored in the folder / directory same as E-PAP Server executable file
and should only accessible by administrator.

84

DESIGN AND IMPLEMENTATION

4.10 E-PAP Client Implementation

E-PAP Client is used to replace original Client For Microsoft Network Logon
(Figure 4-12) for Windows 95/98/98 Second Edition (SE), Microsoft Family Logon
(Figure 4-13) for Windows 98/98 SE, NT LAN Manager (NTLM) for Windows NT
4, Kerberos version 5 for UNIX and Windows 2000. However, E-PAP Client only
supports platforms from Microsoft Windows family.

Notes that Windows 9x can be restricted from someone that does not have
permission (does not have user name and password) to log on by just clicking Cancel
button in Log on dialog box or simply press Escape key (Figure 4-11). This is
achieved by setting below key in Registry:
[HKEY_LOCAL_MACHINE\Network\Logon]
“MustBeValidated”=dword:00000001

Windows Networking

Figure 4-11: Windows restrict logon access.

Windows NT and 2000 platform are restricted to compulsory logon and user is not

permitted to access a computer before successful logon.

Welcome to Window

Figure 4-12: Client for Microsoft Logon

85

DESIGN AND IMPLEMENTATION

Figure 4-13: Microsoft Family Logon

All files required by E-PAP Client, include

e one executable file (client.exe),

o two dynamic link library files, spekebn.dll and spekekit.dll,

o one dictionary file English.txt, which prevent user to choose a password
that contain a word from dictionary. This could protect from on-line
dictionary and off-line dictionary attack.

o three shared dynamic link library files: mfcod2d.dl1l, mfc42d.d1l and
msvertd.dll, which are needed for MEC application,

have been p d into a installation file. After installation and restarting system,
E-PAP Client will be executed before user log on to a computer. All the testing and
the result for E-PAP Client and E-PAP Server had been carried out and recorded in
Chapter 5.

86

