CONTENTS

*	Page
ACKNOWLEDGEMENT	i
ABSTRACT	ii
CONTENTS	iii
LIST OF FIGURES	vi
LIST OF PLATES	viii
LIST OF TABLES	ix
LIST OF ABBREVIATIONS	x
CHAPTER ONE INTRODUCTION	1 - 6
CHAPTER TWO LITERATURE REVIEW	7 - 44
LIGNOCELLULOSE	7
Lignin Cellulose Hemicellulose Lignocellulosic utilization	
MICROBIAL UTILIZATION OF LIGNOCELLULOSICS Pycnoporus sanguineus	9
LIGNOCELLULOLYTIC ENZYMES Lignin-degrading enzymes Cellulose- degrading enzymes Xylan- degrading enzymes	19
SOME APPLICATIONS OF LIGNOCELLULOLYTIC SYSTEMS	30
SOLID-STATE FERMENTATION	32
SOLID-STATE FERMENTATION FOR ENZYME PRODUCTION	41

CHAPTER THREE ENZYME ACTIVITIES DURING LIGNOCELLULOSIC DEGR	45 - 65 ADATION
INTRODUCTION	45
MATERIALS AND METHODS Substrate Inoculum Solid- state fermentation Extraction of crude extracellular enzymes Analysis	46
RESULTS AND DISCUSSION pH variation Soluble protein Xylanase activity Lignin peroxidase activity Laccase activity	53
CONCLUSION	65
CHAPTER FOUR	66-89
EFFECT OF (a) NITROGEN CONCENTRATION AND (b) IN AGE AND DENSITY (W/W) ON LACCASE PRODUCTIVITY SSF OF 'HAMPAS'	
AGE AND DENSITY (W/W) ON LACCASE PRODUCTIVITY	
AGE AND DENSITY (W/W) ON LACCASE PRODUCTIVITY SSF OF 'HAMPAS'	DURING

Effect of inoculum age and density (w/w) pH variation Soluble protein Xylanase activity Lignin peroxidase activity Laccase activity	
CONCLUSION	88
CHAPTER FIVE ENZYME PRODUCTIVITIES DURING LIGNOCELLULOS UNDER OPTIMIZED PARAMETERS	IC DEGRA 90-102
INTRODUCTION	90
MATERIALS AND METHODS Substrate Inoculum Fermentation Analysis	91
RESULTS AND DISCUSSION pH variation Soluble protein Xylanase activity Lignin peroxidase activity Laccase activity	93
CONCLUSION	102
CHAPTER SIX GENERAL DISCUSSION AND CONCLUSION	103-110 103
RECOMMENDATIONS FOR FURTHER WORK CONCLUSION	109 110
REFERENCES	111-125
APPENDIX A: ANALYTICAL TECHNIQUES	126
APPENDIX B: BUFFERS AND MEDIA	134
APPENDIX C: DATA AND STATISTICAL TABLES	135

LIST OF FIGURES

Figure	1.1	Utilization of sago starch	-
Figure	1.2	Sago processing at a conventional factory and by-products generated	4
Figure	2.1	Useful products derived from lignocellulosic materials	1
Figure	2.2	Recycling of agro-residues	1
Figure	2.3	Principal steps in solid-state fermentation	3
Figure	3.1	Flow chart of the P. sanguineus Koji development using	4
		sterilized wheat grains	
Figure	3.2	Procedure for sampling analysis and enzyme assay during SSF of ${\it Hampas}$	52
Figure	3.3	Variation of pH in crude culture extract	56
Figure	3.4	Soluble protein content of crude culture extract	58
Figure	3.5	Xylanase activity of crude culture extract	60
Figure	3.6	Lignin peroxidase activity of crude culture extract	62
Figure	3.7	Laccase activity of crude culture extract	64
Figure	4.1	Variation of pH in crude culture extract	74
Figure	4.2	Soluble protein content of crude culture extract	74
Figure	4.3	Xylanase activity of crude culture extract	76
Figure	4.4	Lignin peroxidase activity of crude culture extract	78
Figure	4.5	Laccase activity of crude culture extract	78
Figure	4.6	Variation of pH in crude culture extract	80
Figure	4.7	Soluble protein content of crude culture extract	82
Figure	4.8	Xylanase activity of crude culture extract	84

Figure	4.9	Lignin peroxidase activity of crude culture extract	85
Figure	4.10	Laccase activity of crude culture extract	87
Figure	5.1	Variation of pH in crude culture extract	94
Figure	5.2	Soluble protein content of crude culture extract	96
Figure	5.3	Xylanase activity of crude culture extract	98
Figure	5.4	Lignin peroxidase activity of crude culture extract	99
Figure	5.5	Laccase activity of crude culture extract	10
Figure	6.1	Proposed integrated system for utilization and treatment of sago starch processing wastes	108

LIST OF PLATES

Plate	3.1	Sago 'hampas' used in the experiment	4
Plate	3.2	Pycnoporus sanguineus on PDA plate (seven day old culture)	4
Plate	3.3	Colonization of 'hampas' by Pycnoporus sanguineus	5
Plate	4.1	Growth of Pycnoporus sanguineus on 'hampas'	72

LIST OF TABLES

Table	2.1	Constituents of <i>Pycnoporus sanguineus</i> and their approximate concentration	1
Table	2.2	$\label{thm:extracellular} \textbf{Extracellular enzymes of basidiomycetes and mode of action on lignocellulose}$	2
Table	2.3	Enzymes involved in the conversion of biomass	3
Table	2.4	Industrial applications of enzymes produced by SSF	4
Table	3.1	Initial contents of flask	50
Table	4.1	Proximate analysis of sago 'hampas'	67
Table	4.2	Nitrogen levels tested in the experiment	69
Table	4.3	Experimental design for the SSF of $hampas$ with $Pycnoporus$ $sanguineus$	70
Table	5.1	Variation in SSF of sago hampas with P. sanguineus using unoptimized and optimized parameters	92