ENHANCED WIRELESS NETWORK PERFORMANCE USING FUZZY LOGIC

A thesis submitted to
The Faculty of Computer Science & Information Technology
University of Malaya
in partial fulfillment of the requirements for
the degree of Master of Computer Science

by

SOO WOOI KING
(WGA 020021)

September 2004

Supervisor: Mr. Ang Tan Fong
ABSTRACT

Wireless networks which were once a rarity has now become commonplace especially in situations where traditional wired networks were deemed unsuitable. However, these networks are known to suffer problems of poor connectivity which results in low performance and high packet losses. Many problems in a wireless network could be attributed to congestion of the medium and the mobility of the mobile nodes because this results in false reports of link availability and therefore increases TCP retransmission timeouts.

In this thesis, an effort has been made to introduce fuzzy logic control into the MAC layer of an IEEE 802.11b wireless network model to diagnose the link between nodes based on the distances and relative velocities between communicating nodes. The proposed logic control predicts whether the nodes are still (and will remain) in communicating range and consequently attempt to reestablish a link between nodes and alleviate the false availability problem. Implementation of the proposal was developed and completed using the ‘ns’ network simulator. Results of simulation tests show that the fuzzy logic control increases the amount of packets transferred around 7% whilst maintaining the level of overhead traffic. The number of packets dropped during delivery is also reduced by around 4%, thus giving a higher delivery ratio of packets.
ACKNOWLEDGEMENTS

I would like to gratefully acknowledge the contributions of several people that have helped me in the process of completing this thesis.

Firstly, I would like to thank my supervisor and lecturers namely Mr. Ang Tan Fong and Dr. Phang Keat Keong for their assistance in helping me understand and complete this project.

Secondly, I would like to thank my coursemates from the MCS group and labmates from the research lab for all their help and for putting up with persistent rants and raves from me.

Thirdly, I would like to thank the developers and forum moderators of the NS program of which without their help and assistance, this project could not be completed. Special thanks go out to Atul Salhotra and Joshua Robinson from the NS forums for answering my many questions about the layer management in NS.

Finally, I would like to thank my family for the support given to me throughout the length of this thesis.

Thank you.
Table of Contents

Abstract i
Acknowledgements ii
Table of contents iii
List of figures vi
List of tables viii
Abbreviations ix

Chapter 1 Introduction

1.1 Thesis Definition 1
1.2 Motivation 2
1.3 Thesis Objectives 4
1.4 Scope and Limitations 5
1.5 Thesis Organization 6

Chapter 2 Literature Review (Wireless Local Area Networks)

2.1 Wireless Local Area Networks 8
 2.1.1 Current Wireless Standards 9
 2.1.2 Components in the IEEE 802.11x WLAN Topology 16
 2.1.3 Anatomy of IEEE 802.11x Standard 19
2.2 Problems with Wireless Transmissions 32
2.3 Performance Issues in Wireless Networks 35
Chapter 3 Literature Review (Fuzzy Logic Methods)

3.1 Fuzzy Logic Through Time 37
3.2 Fuzzy Set Theory 39
 3.2.1 Fuzzy Sets and Notation 39
 3.2.2 Membership Functions 41
 3.2.3 Operations on Fuzzy Sets 43
 3.2.4 Fuzzy Relations 44
 3.2.5 Fuzzy Reasoning (Fuzzy Inferencing) 45
3.3 Applications of Fuzzy Logic 51
3.4 Misconceptions of Fuzzy Logic 52

Chapter 4 Simulation Environments

4.1 Network Simulations 55
 4.1.1 Modelling a Network 56
 4.1.2 Approaches to Simulation 57
4.2 Existing Network Simulators 59
 4.2.1 GloMoSim/Qualnet 59
 4.2.2 OPNET 60
 4.2.3 cnet 61
 4.2.4 JavaSim 62
 4.2.5 NIST ATM/HFS Network Simulator 62
 4.2.6 NS 63
 4.2.7 Summary 64
4.3 Modelling Mobile Networks in NS 66
 4.3.1 The MobileNode Structure and Organization 66
 4.3.2 Outgoing and Incoming Packet Paths 70
4.3.3 Ad-hoc Routing Models in NS 72
4.3.4 Function Calls and Module/Layer Relationship in NS 75

Chapter 5 System Implementation

5.1 Prior Research into Improving WLAN Performance 77
5.2 Implementing Changes into NS 84
 5.2.1 Modelling the IEEE 802.11b MAC Layer 85
 5.2.2 Implementing IEEE 802.11b Channels 89
 5.2.3 Modelling the IEEE 802.11b Physical Layer 90
5.3 Incorporating Fuzzy Logic Control 95

Chapter 6 Simulation Tests and Results

6.1 Simulation Environment 101
6.2 Performance Metrics 106
6.3 Simulation Results 107

Chapter 7 Conclusions and Future Work

7.1 Final Conclusions 117
7.2 Suggestions for Future Work 120

Appendix A 123
Appendix B 140
References 147
LIST OF FIGURES

Chapter 2
Figure 2.1 Bluetooth WPANs with IEEE 802.11b WLANs 13
Figure 2.2 Two independent BSS in an IEEE 802.11 wireless network 16
Figure 2.3 ESS of BSSs using a distribution system 18
Figure 2.4 Interconnection various IEEE 802 LANs 19
Figure 2.5 Layers in IEEE 802.11 standard 20
Figure 2.6 The hidden and exposed node problems 22
Figure 2.7 RTS/CTS exchange between nodes 24
Figure 2.8 Interframe periods between transmissions 26
Figure 2.9 Modulation using 11-chip Barker code 29
Figure 2.10 Interference in frequency hopping spread spectrum 30
Figure 2.11 IEEE 802.11 co-channel interference in ISM band 33
Figure 2.12 Multipath fading and delay spread 34

Chapter 3
Figure 3.1 Strict boundaries in conventional sets 40
Figure 3.2 Fuzzy sets 41
Figure 3.3 Triangular and trapezoidal membership functions 42
Figure 3.4 Bell and sigmoidal membership functions 43
Figure 3.5 Mamdami's fuzzy inference method 48
Figure 3.6 Mizumoto's fuzzy inference method 49
Figure 3.7 Sugeno's fuzzy inference method 50

Chapter 4
Figure 4.1 Representation of connections between nodes and the channel 67
Figure 4.2 Mobile node structure in NS 68
Chapter 5
- Figure 5.1 Fuzzy membership graph for range 98
- Figure 5.2 Fuzzy membership graph for velocity 99

Chapter 6
- Figure 6.1 First setup with sparse network and single TCP connection 102
- Figure 6.2 Second setup with dense network and five TCP connections 102
- Figure 6.3 Amount of packets sent and received for first setup 107
- Figure 6.4 Percentage of change for first setup 108
- Figure 6.5 Packet delivery ratio for first setup 109
- Figure 6.6 Percentage of packet loss for first setup 110
- Figure 6.7 Routing overhead for first setup 111
- Figure 6.8 Amount of packets sent and received for second setup 112
- Figure 6.9 Percentage of change for second setup 113
- Figure 6.10 Packet delivery ratio for second setup 114
- Figure 6.11 Percentage of packet loss for second setup 115
- Figure 6.12 Routing overhead for second setup 116
LIST OF TABLES

Chapter 1
Table 1.1 Sales of mobile terminals to end users by region 3
Table 1.2 Available public WLAN hotspots locations worldwide 3

Chapter 2
Table 2.1 Available WLAN standards 15
Table 2.2 IEEE channel allocation for DSSS in ISM band 28
Table 2.3 IEEE channel allocation for FHSS in ISM band 30

Chapter 4
Table 4.1 Common simulation models 57
Table 4.2 Summary of reviewed network simulators 65

Chapter 5
Table 5.1 PHY characteristics as given in IEEE 802.11 standard 86
Table 5.2 Interference amount between channels 92

Chapter 6
Table 6.1 Summary of simulation parameters 105
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACK</td>
<td>Acknowledge/ment(s)</td>
</tr>
<tr>
<td>AI</td>
<td>Artificial intelligence</td>
</tr>
<tr>
<td>AODV</td>
<td>Ad hoc on-demand distance vector routing protocol</td>
</tr>
<tr>
<td>AP</td>
<td>Access point</td>
</tr>
<tr>
<td>API</td>
<td>Application programming interface</td>
</tr>
<tr>
<td>ARIB</td>
<td>Association of radio industries and businesses</td>
</tr>
<tr>
<td>ARP</td>
<td>Address resolution protocol</td>
</tr>
<tr>
<td>ATM</td>
<td>Asynchronous transfer mode</td>
</tr>
<tr>
<td>B-SIG</td>
<td>Bluetooth Special Interest Group</td>
</tr>
<tr>
<td>BSS</td>
<td>Basic service set</td>
</tr>
<tr>
<td>CBR</td>
<td>Constant bit rate</td>
</tr>
<tr>
<td>CCK</td>
<td>Complementary code keying</td>
</tr>
<tr>
<td>CLR</td>
<td>Clear</td>
</tr>
<tr>
<td>CONSER</td>
<td>Collaborative Simulation for Education and Research</td>
</tr>
<tr>
<td>CRC</td>
<td>Cyclic redundancy check</td>
</tr>
<tr>
<td>CSMA/CA</td>
<td>Carrier sense multiple access with collision avoidance</td>
</tr>
<tr>
<td>CSMA/CD</td>
<td>Carrier sense multiple access with collision detection</td>
</tr>
<tr>
<td>CTS</td>
<td>Clear to send</td>
</tr>
<tr>
<td>CW</td>
<td>Contention window / Congestion window</td>
</tr>
<tr>
<td>DARPA</td>
<td>Defense Advanced Research Projects Agency</td>
</tr>
<tr>
<td>DCF</td>
<td>Distributed coordination function</td>
</tr>
<tr>
<td>DGPT</td>
<td>Direction Generale des Postes et Telecominications</td>
</tr>
<tr>
<td>DIFS</td>
<td>Distributed inter frame space</td>
</tr>
<tr>
<td>DS</td>
<td>Distribution system</td>
</tr>
<tr>
<td>DSDV</td>
<td>Dynamic destination sequenced distance vector routing protocol</td>
</tr>
<tr>
<td>DSR</td>
<td>Dynamic source routing protocol</td>
</tr>
<tr>
<td>DSSS</td>
<td>Direct sequence spread spectrum</td>
</tr>
<tr>
<td>ECN</td>
<td>Explicit congestion notification</td>
</tr>
</tbody>
</table>
EIFS Extended inter frame space
ESS Extended service set
ETSI European Telecommunications Standards Institute
FCC Federal Communications Commission
FHSS Frequency hopping spread spectrum
FTP File transfer protocol
GHz Gigahertz
GPRS General packet radio service
HFC Hybrid fibre coaxial
IBSS Independent basic service set
IC Industrie Canada
ICMP Internet control message protocol
IEEE Institute of Electrical and Electronics Engineers
IFQ Interface queue
IP Internet protocol
IR Infrared
ISM Industrial, scientific and medical
LAN Local area network
LLC Logical link control (layer)
MAC Medium access control (layer)
Mbps Megabits per second
MHz Megahertz
MSDU MAC service data unit
NAV Network allocation vector
NIST National Institute of Standards and Technology
NSF National Science Foundation
OEM Original equipment manufacturer
OFDM Orthogonal frequency division multiplexing
OSI Open system interconnection
OTcl Object tool command language
PARSEC Parallel simulation environment for complex systems
PCF Point coordination function
PDU Protocol data unit
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHY</td>
<td>Physical (layer)</td>
</tr>
<tr>
<td>PIFS</td>
<td>Point coordination inter frame space</td>
</tr>
<tr>
<td>PLCP</td>
<td>Physical layer convergence procedure</td>
</tr>
<tr>
<td>PMD</td>
<td>Physical media dependant</td>
</tr>
<tr>
<td>QRY</td>
<td>Query</td>
</tr>
<tr>
<td>RF</td>
<td>Radio frequency(ies)</td>
</tr>
<tr>
<td>RREQ</td>
<td>Route request</td>
</tr>
<tr>
<td>RTO</td>
<td>Retransmission timer timeout</td>
</tr>
<tr>
<td>RTS</td>
<td>Request to send</td>
</tr>
<tr>
<td>RTX</td>
<td>Retransmission timer</td>
</tr>
<tr>
<td>SAMAN</td>
<td>Simulation augmented by measurement and analysis for networks</td>
</tr>
<tr>
<td>SIFS</td>
<td>Short inter frame space</td>
</tr>
<tr>
<td>SNR</td>
<td>Signal-to-noise ratio</td>
</tr>
<tr>
<td>SSID</td>
<td>Service set identifier</td>
</tr>
<tr>
<td>SST</td>
<td>Slow start threshold</td>
</tr>
<tr>
<td>STA</td>
<td>Station</td>
</tr>
<tr>
<td>Tcl (TCL)</td>
<td>Tool command language</td>
</tr>
<tr>
<td>TCP</td>
<td>Transmission control protocol</td>
</tr>
<tr>
<td>Tk</td>
<td>Toolkit</td>
</tr>
<tr>
<td>TORA</td>
<td>Temporally ordered routing algorithm</td>
</tr>
<tr>
<td>UNII</td>
<td>Unlicensed national information infrastructure</td>
</tr>
<tr>
<td>UPD</td>
<td>Update</td>
</tr>
<tr>
<td>VBR</td>
<td>Variable bit-rate</td>
</tr>
<tr>
<td>VCS</td>
<td>Virtual carrier sense</td>
</tr>
<tr>
<td>VLAN</td>
<td>Virtual local area network</td>
</tr>
<tr>
<td>VoIP</td>
<td>Voice over IP</td>
</tr>
<tr>
<td>WEP</td>
<td>Wireless equivalent protection / Wired equivalent privacy</td>
</tr>
<tr>
<td>WLAN</td>
<td>Wireless local area network</td>
</tr>
<tr>
<td>WPA</td>
<td>Wireless privacy authentication / Wifi protected access</td>
</tr>
<tr>
<td>WPAN</td>
<td>Wireless personal area network</td>
</tr>
<tr>
<td>ZRP</td>
<td>Zone routing protocol</td>
</tr>
</tbody>
</table>