TABLE OF CONTENTS

Abstract	1
Acknowledgements	ii
Table of contents	iii
List of figures	vi
List of tables	vii
Abbreviations	ix
Chapter 1 Introduction	
1.1 Thesis Definition	1
1.2 Motivation	2
1.3 Thesis Objectives	4
1.4 Scope and Limitations	5
1.5 Thesis Organization	6
Chapter 2 Literature Review (Wireless Local Area Networks)	
2.1 Wireless Local Area Networks	8
2.1.1 Current Wireless Standards	9
2.1.2 Components in the IEEE 802.11x WLAN Topology	16
2.1.3 Anatomy of IEEE 802.11x Standard	19
2.2 Problems with Wireless Transmissions	32
2.3 Performance Issues in Wireless Networks	35

Chapter 3 Literature Review (Fuzzy Logic Methods)	
3.1 Fuzzy Logic Through Time	37
3.2 Fuzzy Set Theory	39
3.2.1 Fuzzy Sets and Notation	39
3.2.2 Membership Functions	41
3.2.3 Operations on Fuzzy Sets	43
3.2.4 Fuzzy Relations	44
3.2.5 Fuzzy Reasoning (Fuzzy Inferencing)	45
3.3 ·Applications of Fuzzy Logic	51
3.4 Misconceptions of Fuzzy Logic	52
Chapter 4 Simulation Environments	
4.1 Network Simulations	55
4.1.1 Modelling a Network	56
4.1.2 Approaches to Simulation	57
4.2 Existing Network Simulators	59
4.2.1 GloMoSim/Qualnet	59
4.2.2 OPNET	60
4.2.3 cnet	61
4.2.4 JavaSim	62
4.2.5 NIST ATM/HFS Network Simulator	62
4.2.6 NS	63
4.2.7 Summary	64
4.3 Modelling Mobile Networks in NS	66
4.3.1 The MobileNode Structure and Organization	66
4.3.2 Outgoing and Incoming Packet Paths	70

4.3.3 Ad-hoc Routing Models in NS	72
4.3.4 Function Calls and Module/Layer Relationship in NS	75
Chapter 5 System Implementation	
5.1 Prior Research into Improving WLAN Performance	77
5.2 Implementing Changes into NS	84
5.2.1 Modelling the IEEE 802.11b MAC Layer	85
5.2.2 Implementing IEEE 802.11b Channels	89
5.2.3 Modelling the IEEE 802.11b Physical Layer	90
5.3 Incorporating Fuzzy Logic Control	95
Chapter 6 Simulation Tests and Results	
6.1 Simulation Environment	101
6.2 Performance Metrics	106
6.3 Simulation Results	107
Chapter 7 Conclusions and Future Work	
7.1 Final Conclusions	117
7.2 Suggestions for Future Work	120
Appendix A	123
Appendix B	140
References	147

LIST OF FIGURES

Chapter 2		
Figure 2.1	Bluetooth WPANs with IEEE 802.11b WLANs	13
Figure 2.2	Two independent BSS in an IEEE 802.11 wireless network	16
Figure 2.3	ESS of BSSs using a distribution system	18
Figure 2.4	Interconnection various IEEE 802 LANs	19
Figure 2.5	Layers in IEEE 802.11 standard	20
Figure 2.6	The hidden and exposed node problems,	22
Figure 2.7	RTS/CTS exchange between nodes	24
Figure 2.8	Interframe periods between transmissions	26
Figure 2.9	Modulation using 11-chip Barker code	29
Figure 2.10	Interference in frequency hopping spread spectrum	30
Figure 2.11	IEEE 802.11 co-channel interference in ISM band	33
Figure 2.12	Multipath fading and delay spread	34
Chapter 3		
Figure 3.1	Strict boundaries in conventional sets	40
Figure 3.2	Fuzzy sets	41
Figure 3.3	Triangular and trapezoidal membership functions	42
Figure 3.4	Bell and sigmoidal membership functions	43
Figure 3.5	Mamdami's fuzzy inference method	48
Figure 3.6	Mizumoto's fuzzy inference method	49
Figure 3.7	Sugeno's fuzzy inference method	50
Chapter 4	15	
Figure 4.1	Representation of connections between nodes and the channel	67
Sigure 4.2	Mobile node etructure in NS	60

Chapter 5		
Figure 5.1	Fuzzy membership graph for range	98
Figure 5.2	Fuzzy membership graph for velocity	99
Chapter 6		
Figure 6.1	First setup with sparse network and single TCP connection	102
Figure 6.2	Second setup with dense network and five TCP connections	102
Figure 6.3	Amount of packets sent and received for first setup	107
Figure 6.4	Percentage of change for first setup	108
Figure 6.5	Packet delivery ratio for first setup	109
Figure 6.6	Percentage of packet loss for first setup	110
Figure 6.7	Routing overhead for first setup	111
Figure 6.8	Amount of packets sent and received for second setup	112
Figure 6.9	Percentage of change for second setup	113
Figure 6.10	Packet delivery ratio for second setup	114
Figure 6.11	Percentage of packet loss for second setup	115
Figure 6.12	Routing overhead for second setup	116

LIST OF TABLES

Chapter 1		
Table 1.1	Sales of mobile terminals to end users by region	3
Table 1.2	Available public WLAN hotspots locations worldwide	3
Chapter 2		
Table 2.1	Available WLAN standards	15
Table 2.2	IEEE channel allocation for DSSS in ISM band	28
Table 2.3	IEEE channel allocation for FHSS in ISM band	30
Chapter 4		
Table 4.1	Common simulation models	57
Table 4.2	Summary of reviewed network simulators	65
Chapter 5		
Table 5.1	PHY characteristics as given in IEEE 802.11 standard	86
Table 5.2	Interference amount between channels	92
Chapter 6		
Table 6.1	Summary of simulation parameters	105

ABBREVIATIONS

ACK Acknowledge/ment(s)

AI Artificial intelligence

AODV Ad hoc on-demand distance vector routing protocol

AP Access point

API Application programming interface

ARIB Association of radio industries and businesses

ARP Address resolution protocol
ATM Asynchronous transfer mode
B-SIG Bluetooth Special Interest Group

BSS Basic service set

CBR Constant bit rate

CCK Complementary code keying

CLR Clear

CONSER Collaborative Simulation for Education and Research

CRC Cyclic redundancy check

CSMA/CA Carrier sense multiple access with collision avoidance
CSMA/CD Carrier sense multiple access with collision detection

CTS Clear to send

CW Contention window / Congestion window

DARPA Defense Advanced Research Projects Agency

DCF Distributed coordination function

DGPT Direction Generale des Postes et Telecominications

DIFS Distributed inter frame space

DS Distribution system

DSDV Dynamic destination sequenced distance vector routing protocol

DSR Dynamic source routing protocol
DSSS Direct sequence spread spectrum
ECN Explicit congestion notification

EIFS Extended inter frame space

ESS Extended service set

ETSI European Telecommunications Standards Institute

FCC Federal Communications Commission
FFGS Frequency hopping spread spectrum

FTP File transfer protocol

GHz Gigahertz

GPRS General packet radio service

HFC Hybrid fibre coaxial

IBSS Independent basic service set

IC Industrie Canada

ICMP Internet control message protocol

IEEE Institute of Electrical and Electronics Engineers

IFQ Interface queue
IP Internet protocol

IR Infrared

ISM Industrial, scientific and medical

LAN Local area network

LLC Logical link control (layer)

MAC Medium access control (layer)

Mbps Megabits per second

MHz Megahertz

MSDU MAC service data unit

NAV Network allocation vector

NIST National Institute of Standards and Technology

NSF National Science Foundation
OEM Original equipment manufacturer

OFDM Orthorgonal frequency division multiplexing

OSI Open system interconnection
OTcl Object tool command language

PARSEC Parallel simulation environment for complex systems

PCF Point coordination function

PDU Protocol data unit

Physical (laver) PHY

Point coordination inter frame space PIFS PL.CP Physical layer convergence procedure

Physical media dependant

PMD

ORY Ouerv

Radio frequency(ies) RF

RREO Route request

Retransmission timer timeout RTO

Request to send RTS

Retransmission timer RTX

SAMAN Simulation augmented by measurement and analysis for networks

SIFS Short inter frame space Signal-to-noise ratio SNR

Service set identifier SSID

Slow start threshold SST

STA Station

Tool command language Tel (TCL)

Transmission control protocol TCP

Toolkit Tk

TORA Temporally ordered routing algorithm

Unlicensed national information infrastructure UNII

UPD Update

Variable bit-rate VRR

VCS Virtual carrier sense

Virtual local area network VLAN

Voice over IP VoIP

Wireless equivalent protection / Wired equivalent privacy WEP

WI.AN Wireless local area network

Wireless privacy authentication / Wifi protected access WPA

WPAN Wireless personal area network

ZRP Zone routing protocol