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CHAPTER 3

Fuzzy SET THEORY AND Fuzzy LOGIC

Fuzzy logic is introduced in this chapter starting with the history of how fuzzy logic
was conceptualised. The basic aspects of fuzzy set theory is then discussed — taking
into account how fuzzy sets, relations and inferencing combine together to create a

fuzzy logic control using several fuzzy inference techniques.

3.1 Fuzzy Logic Through Time

Fuzzy logic is a problem-solving methodology often used to approximate reasoning
in situations where information supplied is incomplete, imprecise, ambiguous or
unreliable. Often times in real life, resulting answers to questions do not fall into the
strict true or false categories but somewhere in be.tween Even the early philosophers
such as Plato have comer'nplated the existence of a third region called the uncertain
that lies between True and False. This was in contradiction with the “Law of the
Excluded Middle” from “The Laws of Thought” by Aristotle in which states that each

and every preposition must be either True or False (Matthews 1999).

Centuries later, in the 1900s, a tri-valued logic system was devised by mathematician
Jan Lukasiewicz and was probably the first logical calculus of its type although it

had only three axioms. Lukasiewicz later expanded his theories into four- and five-
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valued logic systems and eventually concluded that an infinite-valued logic was no
less plausible than a finite one. In 1965, Lofti A. Zadeh from the University of
California, Berkeley introduced the first concepts of fuzzy logic in his work on fuzzy
set theory to deal with the problem of partial truths — the truth values between
“completely true” and “absolutely false”. Zadeh applied Lukasiewicz’s logic to all
objects in a set and devised calculations to operate on the sets but even so, fuzzy sets
were not implemented until the mid 1970s, when Ebrahim H. Mamdani of Queen
Mary College in London successfully designed a fuzzy controller for a steam engine.
Since then, the term “fuzzy logic” has come to mean any mathematical or computer

system that reasons with fuzzy sets.

The importance of fuzzy logic is from the fact that most methods of human reasoning
are approximate in nature and therefore the logic underlying the concepts of fuzzy
logic should too be approximate instead of exact. The five basic principles of fuzzy
logic as founded by Zadeh is as follows (Zadeh 1965):
1. In fuzzy logic, exact reasoning is viewed as a limiting case of approximate
reasoning.
2. In fuzzy logic, everything is specified as a ;r\aller of degree.
3. Any logical systcn; can be fuzzified
4, In fuzzy logic, knowledge is interpreted as a collection of elastic or,
equivalently, fuzzy constraint on a collection of variables
5. Inference is viev?ed as a process of propagation of elastic constraints.
The understanding behind these principles are more clearly defined by explaining

Zadeh’s fuzzy set theory.
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3.2 Fuzzy Set Theory

The now familiar concepts of fuzzy sets and fuzzy logic were introduced by Zadeh
while working in the field of control engineering. The purpose of his work was as an
approach to handling uncertainty and vagueness and, in particular, linguistic
variables (John 1995) which do not conform well into the exacting black-and-white
world of computing. Major advancements to his fuzzy set theory has now led to the
implementation of fuzzy logic systems or more precisely fuzzy inferencing systems

in many applications.

The fuzzy set theory can be divided into several sections which include fuzzy sets,
membership functions, fuzzy operations and relations as well as fuzzy reasoning. The
parts all combine to perform the various operations of a fuzzy logic control in a fuzzy

inferencing system.

3.2.1 Fuzzy Sets and Notation

Conventional mathematical sets or bivalent sets are sets with objects that either
clearly belong or do not belong to the set. There’is no middle ground — the number
three belongs fully to the set of odd numbers and not at all to the set of even
numbers. In such sets, an object cannot belong to both a set and its complement set
or to neither of the sets. This principle preserves the structure of Boolean logic and
avoids the contradiction of an object that both is and is not a thing at the same time
(Kosko & Isaka 2000). Sets like these are called crisp sets to differentiate them from

the fuzzy sets as explained below. -
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Fuzzy sets are sets with objects that cannot clearly be defined as belonging or not
belonging to the set. Items can belong only partially to a fuzzy set and they can also
belong to more than one set (Kosko & Isaka 2000). One simple example to illustrate
a fuzzy set is the set of tall people. Using conventional sets, a well-defined boundary
is present as a threshold to separate the objects in the set into those that are tall and
those that are not. However this strict division does not agree with our common sense
because if a person being just a mere millimetre below this height threshold, he

would be classified as “not tall” instead which is unreasonable.
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Figure 3.1 — Strict boundaries in conventional sets

One method of solving this problem is to assign a numerical value between 0 and 1
to represent the degree to which a person is evaluated as being tall. This is the
fundamental idea of fuzzy sets, with the boundaries of a class being less defined and
operate over a specific range of values as compared to the Boolean logic. The
boundaries of fuzzy sets are curved or taper off, and this curvature creates partial
contradictions. Using the same example, when plotted on the X-Y axis of a graph, a
smooth varying curve is created that passes from “not so tall” to “tall’. The Y output

axis provides the membership value and thus the objects are classified into the same
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fuzzy set for ‘tall’ but to varying degrees. This process is often referred to as

fuzzifying the inputs or fuzzification.
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Figure 3.2 — Fuzzy sets

3.2.2 Membership functions

The degree to which an object is classified is determined by the curve and this curve
is known as the membership function often with the given notation of either u or m.
In other words, membership functions are the functions that map each point of an
input space to a point in the real interval [0.(5, 1.0] thus giving the degree of
membership. These mcml;ership functions are often represented graphically for ease

of understanding such as tiose in the previous example to categorise tall people.

The input space to a membership function is sometimes referred to as the universe of
discourse which is nothing but a fancy name. It should be understood that fuzzy
degrees are not the same as probability perceritages. Probabilities measure whether

something will occur or not whilst fuzziness measures the degree to which something
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occurs or some condition exists. There is a one-to-one correspondence between fuzzy

sets and their membership functions (Asai 1995) as defined by the following:

The fuzzy set A in the universe of discourse X is given by the membership function
He=X—>[0]]

Similarly, since the fuzzy ;el can be viewed as a membership function, therefore

A X —>[0.)]

Membership functions can be incredibly simple or extremely complex depending on
the situation in which it is appli::d to. Common shapes for functions include
triangular, trapezoidal, sinusoidal and bell curves but the shape is relatively less
important than their number and placement to ensure adéquate coverage of the input

space and at times, as many as three to seven curves or functions are used.

The simplest membership functions use linear lines only and of these the most basic
is the triangular membership function. A truncation of the triangular function results
in the trapezoidal function. All straight-line membership functions have the
advantage of simplicity in representation and calculation but the simplicity can also

be a disadvantage as it cannot represent the fuzzy set accurately.

Figure 3.3 — Triangular and trapezoidal membership functions
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Curved membership functions can be formed using gaussian, sigmoidal or
polynomial functions depending on the type of curve needed. Gaussian functions
usually form symmetrical bell shaped curves whilst sigmoidal functions can form
asymmetrical bell curves. Polynomial functions create S and Z shaped curves with
open ends. The advantage of curved functions is that it is nonzero at all points in the

curve but the calculations are often much more complex.

Figure 3.4 — Bell and sigmoidal membership functions

3.2.3 Operations on Fuzzy Sets

Fuzzy sets have the same operations defined as those for conventional sets. This
includes operations of intersection, union and complement or more precisely the
AND, OR and NOT operations. The common operétions are described briefly:

Union

The membership function for the union of two fuzzy sets A and B with membership
functions pa and pp respectively is defined as the maximum of the two individual
membership functions. Union functions are also called the maximum criterion and
are equivalent to the OR operation in Boolean algebra.

AY B & gy (x) = p(x) A pr,(x)
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Intersection

The membership function for the intersection of two fuzzy sets A and B with
membership functions pa and pg respectively is defined as the minimum of the two
individual membership functions. Intersection functions are also called the minimum
criterion and is equivalent to the AND operation in Boolean algebra.

Al B gy 5 (x) = p,(x) v 1 (x)

Complement

The membership function for the complement of a fuzzy set A with the membership
function pa is defined as the negation of the specified function. This is equivalent to

the NOT operation in Boolean algebra.

A p,(x) =1-p,(x)

Other rules in conventional set theory such as De Morgan's Law and the laws of
associativity, commutativity and distributivity also apply similarly to the fuzzy set
theory. Although it is common to define intersection and union functions using min
and max operations, it is also possible to use product operations and sum operations

instead.

3.2.4 Fuzzy Relations

Computers cannot reason as human brains do as they can only manipulate precise
facts that have been reduced to strings of zeros and ones and evaluate statements that
are either true or false (Kosko 1995). In other words, computers handle only

conventional relations that have Boolean results. Comparatively, the human brain

44



Chapter 3

often reasons with vague assertions or claims that involve uncertainties or value
judgments such as “the temperature is warm" or "the car is fast" or "the hole is too
big". To represent these ambiguous statements, fuzzy relations are required to show

the strength of the relations between the elements.

The previously mentioned concepts of fuzzy sets using membership functions and
fuzzy operations are combined to construct a fuzzy relationship. A fuzzy relation, R,
can therefore be defined as a membership function pg from set X to Y. The value of
MR (x,y) € [0,1]

expresses the degree or strength of the relation between the elements x and y. In
other words, a fuzzy relation generalizes a conventional relation into one that can
allow partial memberships and describes a relationship that holds between two or
more fuzzy objects. As the u value approaches 1 the relation gets stronger and
conversely the relation gets weaker when it approaches 0. An example of this is a
fuzzy relation for “friend” which could describe the degree of friendship between
two objects (people in this case) as opposed to the conventional relation which only

affords the objects to either being a friend or not.

3.2.5 Fuzzy Reasoning (Fuzzy Inferencing)
Fuzzy reasoning is an inference method for deriving one fuzzy proposition from
several fuzzy propositions (Asai 1995) and forms the basis of implementing fuzzy

logic. Most inference methods have the following IF-THEN structure as fuzzy rules:

Rule IFxisATHENyisB .
Fact X is A'
Conclusion yisB'" -
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In the rule above A, A', B and B' are the fuzzy sets in the universe of discourse. The
IF part is called the antecedent or premise and the THEN part is called the
consequent or conclusion. Multiple antecedents can also be combined with the use of
the fuzzy logic operators such as AND and OR to create more complex rules. For
example:

IF service is poor THEN tip is small. (single antecedent and consequent)

IF skin is yellow AND flesh is soft THEN fruit is ripe

(multiple antecedents with single consequent)

The process of interpreting any rule is divided into two parts (Zadeh 1989). The first
involves evaluating the antecedent to obtain the degree of membership of the fuzzy
statements. This is known as fuzzifying the input or fuzzification. If there are
multiple parts to the antecedents, the individual inputs are applied to their respective
membership functions and the results are resolved to a single degree between 0 and 1

using the AND or OR operators.

The second step (inferencing) is to apply the implication method by applying the
result to the consequent. The consequent of a fuzz;' rule assigns an entire fuzzy set to
the output. This fuzzy set is also represented by a membership function that is chosen
to indicate the qualities of the consequent. Normally, a minimum of two and
preferably more IF-THEN rules are used of which the output of each rule is mapped
to a fuzzy set. These sets are then reduced into a sihéle output fuzzy set in a process
called defuzzification to obtain a crisp value. Defuzzification can be based on the
result average (e.g. centroid of a graph) or through weighted calculations. Several

inferencing methods are discussed on the following pages:
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Mamdami's Inference Method (Min-Max)

The Mamdami inference method is one often found in fuzzy control and fuzzy expert

systems. It is sometimes referred to as the min-max method simply because it uses

both the min and max operations. The inferencing process is as follows:

1.

Fuzzify the inputs and determine to what degree to which they belong to a
fuzzy set using the corresponding membership functions. If more than one
input is used (two or more antecedents present), then each input is matched to
its corresponding membership function and its output obtained.

Once the inputs are fuzzified, apply the fuzzy operator (if more than one
antecedent) to obtain one number that represents the result of the antecedent
for that rule. This number will then be applied to the output function. In
Mamdami's inference method the AND operator uses the min operation
whilst the OR operator uses the max operation. The min operation simply
selects the smaller antecedent value in the group and the max operator selects
the largest.

The third step is to apply the implication method for the consequent. A
consequent is also a fuzzy set represented by a membership function, which
weighs appropriately with the linguistic ch;racteristics that are attributed to it.
The consequent is ;eshaped using a function associated with the antecedent
The next step involves the aggregation of the results of all the rules. In the
example below, the results are aggregated using the max operator.

The final stage is the defuzzification stage of which the most popular is the
centroid calculation which returns the centre of gravity under the curve as the

result.
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The diagram below illustrates the individual steps stated in the previous page. Two
inputs, x0 and y0 are used and are fuzzified against their membership functions A1,
A2, BI and B2. The fuzzy operator is applied, which in this case is the AND operator
and the smaller output value is taken. The result of the fuzzy operator is then applied
to the consequent function C1 and C2. These results are finally aggregated and the

centroid obtained as the result, z0.
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Figure 3.5 - Mamdami’s fuzzy inference method
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Mizumoto's Inference Method (Product-sum-gravity)

Mizomoto's product-sum-gravity method is quite similar to Mamdami’s inference
method but it replaces the min operation in the Min-Max method with the algebraic
product (multiplication) and the max with the sum. The rest of the inferencing
process remains the same and the centroid is used as the result of the inference and

defuzzification process.
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Figure 3.6 — Mizumoto’s fuzzy inference method
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Sugeno's Inference Method (Simple inference)

The Sugeno Inference method (or more precisely, the Takagi-Sugeno Kang inference
method) is also very similar to the previous two other methods mentioned in terms of
fuzzifying the inputs and applying the fuzzy operator. The major difference is that
the outputs of the membership functions are linear values or constants that are often
referred to as spikes or singletons. In this method, the output of the inference is
calculated based on the fuzzy operator output and a weight associated with the rule.
The immediate advantage is that the defuzzification process is greatly simplified but
fine-tuning of the controller is much more difficult. There are variations of this
simplified inference but they generally retain the same concept of linear outputs with

weights.

input 100) Input 2 (y0) ﬂ

Final output, 20 =

Figure 3.7 — Sugeno’s fuzzy inference method
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3.3 Applications of Fuzzy Logic

The concept of fuzzy logic has always and will probably remain controversial.
Although widely accepted and used by engineering and computing communities, it is
often rejected by mathematicians and statisticians. They argue that fuzzy logic
cannot possibly be the superset of conventional (Boolean) logic since the
membership functions are defined in the terms of conventional sets. Then there are
those that argue that the fuzzy logic concept is unscientific since the membership

values cannot be empirically verifiable.

Nevertheless, fuzzy logic has since been successfully used in many applications.
Fuzzy logic can be used to control devices and appliancés such as air-conditioners,
refrigerators and washing machines giving them the ability to adjust their
performance according to the situation presented. Vehicles also come with
implemented additions using fuzzy logic such as ABS braking systems and cruise

control features which are common in high-end automobiles.

One of the most common applications of fuzzy logic is in the form of artificial

3

intelligence for the gaming industry. It is, for the most part, well-suited to simulate
the actions of a ‘vinua'l‘ player/opponent in any game whilst still retaining
reasonable human-like faults and flaws to keep game-play as realistic as possible.
One prominent implementation that stands out is IBM Corporation’s Deep Blue
system that analysed over 200 million chess moves per second to defeat Chess Grand
Master Garry Kasparov in just six games with a 3.5-2.5 resulting victory for Deep

Blue.
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Another exciting field of fuzzy logic is its use in prediction and diagnosis systems
such as in meteorological devices to predict weather changes including the
possibility of dangerous weather occurring (e.g. hurricanes, typhoons and drought).
Fuzzy logic is also being evaluated for use in calculating the probability of
carthquakes and tsunamis occurring. It is hoped that using fuzzy logic, disasters like
these can be accurately predicted and avoided to save thousands of lives that could
be affected. Diagnostic systems benefit greatly from fuzzy logic inference because it

closely matches how humans perform deductions and obtains results. Currently,

there are working impl ions of medical sy using fuzzy logit to diagnose

multiple diseases and even one specialised to diagnose cancer.

3.5 Misconceptions of Fuzzy Logic

The term 'fuzzy' has often lead many to believe that the method used in fuzzy logic
reasoning is imprecise or not serious. However, fuzzy logic is no less precise than
any other form of logic but provides a mathematical equivalent to handle inherently
uncertain concepts (i.e. the idea of 'fast' cannot be represented in conventional logic)
(Entemann 2002). Another common misconception is that fuzzy logic is a method of
measuring the probability of an occurrence. As previously stated above, the degrees
of membership represent to what extent or degree something occurs and not how
often it does or does not occur.
.

Fuzzy logic is also commonly referenced as fields of study in applications of
artificial intelligence (Al). Although this is in part true since most applications of

fuzzy logic tend to emulate human control (i.e. in fuzzy expert systems, control
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systems etc.), fuzzy logic is not restricted to Al type applications only and can

certainly be applied to any situation requiring the handling of uncertainty.

Lastly, fuzzy logic is sometimes seen as an answer to situations in which
conventional logic cannot handle. This is somewhat true since fuzzy logic can often
be made suited for various situations but an effort must be made since no two
situations can use the same fuzzy logic conditions (i.e. different membership
functions, fuzzy sets and rules are required) and there is no one-size-fits-all solution
available (Cox 1999). Finding the optimum conditions will probably take more time
and effort but the end result will be more flexible and able to adapt to changing

conditions it was applied to.

Once these misconceptions are clarified and understood, the strengths of fuzzy logic
can then shine through. Based on implementation, the fuzzy logic methodology
allows for simpler and faster design and development of systems controllers - instead
of having to remodel, redesign and rewrite the control algorithm as in the
conventional approach, often the only change required to fuzzy logic controls are to
the definitions for the fuzzy relations/rules and‘fuzzy sets. This process of only
modifying the rules for'debugging and fine-tuning is considerably faster than
redesigning the entire controller. In terms of simpler design, fuzzy logic lets complex
control systems to be described in simple English-like clauses. This is in comparison
"with conventional systems which might require complex equations or math models to
represent the same degree of control and relationship between the inputs and the

result outputs.
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Performance wise, fuzzy logic frequently outperforms conventional control design
systems when facing the same situation. Many systems require non-linear control
and conventional design controls have to use different methods to handle this non-
linearity including using piecewise-linear and table-lookup approximations. This
approximation comes at the cost of system performance, cost and complexity. Fuzzy
logic provides the perfect alternative solution because it is closer to the real world in
representation. The non-linearity is handled by fuzzy sets, membership functions,
relations and the inference process which results in improved performance, simpler

implementation, and reduced design costs.

Many fuzzy control implementations are smaller and require less memory to run than
conventional controls thus making it easier to include as either software or hardware
implementations. The inherent flexibility also gives fuzzy logic a natural capability
to adapt to ever-changing situations more gracefully and with more stability. In
uncontrolled situations like these, conventional control falters as it suffers an
instability problem while trying to compensate for constant changes. On the whole,
fuzzy logic can often be successfully used as a methodology for developing better

control systems for all types of systems.
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