Chapter 4

CHAPTER 4

SIMULATION ENVIRONMENTS

One requirement of this thesis is the use of a network simulator to evaluate the
performance of the fuzzy logic control added. This chapter therefore describes the
evaluation of several network simulators for use in this thesis. Both commercial and

free types of simulators were considered to determine the one best suited for the task.

Fundamental basics such as the acquisition, installation and running of the reviewed
software is not included in the text of this report. There is more than adequate
information available about how to perform these tasks through manuals and online

documentation and repeating them here would be redundant.

4.1 Network Simulations

Network simulations are model representations of real network systems that are

designed for the purpose of conducting experiments to understand the behaviour of

the system and/or evaluate different strategies for the operation of the system
-

(Breslau et al. 2000). Any proper simulation should behave or operate like the system

it was designed after when given a set of controlled inputs so as to obtain an accurate

depiction of the actual working system. Thus it is important that a simulation handles

55

Chapter 4

all the actual processes that occur, both internally and externally, and not just directly

simulate the results by means of calculations.

Simulations of networks are often performed in place of constructing an actual
network. To physically build a network just for testing purposes is unjustified as it is
usually impractical and more often than not, is very expensive. In some cases, it is
just simply impossible to construct the network especially when it involves changing
hardware specifications which could require special equipment. Running simulations
allows for more precise gathering and measurement of simulation data since every
aspect of the simulation can be tracked as variables whilst in a real network it would
involve various collection devices and additional software. The use of simulation
therefore offers a practical and more precise means of obtaining accurate information

that contributes to the planning and designing of a new system.

4.1.1. Modelling a Network

Simulations of networks begin with the construction of the simulation models. A
simulation model attempts to emulate the functional components in an actual
network — nodes, protocols, resources and links — by replicating the components'
characteristics and tasks it normally performs. These network components can then
communicate with each other through model defined or user provided interfaces to
form the entire network topology. Since most models are an abstraction of real
systems, it cannot fully represent any system in whole but must implement elements

that are vital to the simulation objective.

56

Chapter 4

The following categories of models are commonly found in network simulators

although not all the examples of models given in each category are included.

Table 4.1 - Common simulation models

Model type Examples

'Application layer FTP, HTTP, VolIP, Media streaming, CBR, VBR

3

4.1.2 Approaches to Simulation
There are many approachies to running simulations but most network simulators
typically use one of two simulation methods: discrete-event or analytical. In
analytical simulations, mathematical equations are used to predict network and
application performance in the system. Once the firmulas and equations are derived
(e.g. queuing theory, probability theory, etc.), the evaluation of the system is very
quick but the accuracy of the simulation is sacrificed because analytical simulations
have a habit of making assumptions and simplifications of the simulated model. One

problem with analytical simulations is that while it can simulate small sized networks

57

Chapter 4

exactly and quickly, it does not scale well to large networks (inaccuracies are
magnified) and cannot simulate complex network configurations that might be

needed.

On the other hand, discrete-event simulators create an extremely detailed, packet-by-
packet model of predicted network activity by tracing events that occur at specific
finite points in simulation time (not real time). The task of tracing each and every
event that occurs for all objects in the model often requires extensive calculations
and processing to simulate a brief period of “real time”. Typical discrete-event
simulations are painfully slow and can take anywhere from minutes to days just to
run to completion even though the actual simulated amount of time is only a fraction
of the time taken. Discrete-event simulators also have heavy demands on processing
power and usually require extremely large amounts of memory to run successfully. It
is unsurprising to hear about discrete-event simulations requiring many gigabytes of
memory just to run as the amount required often grows exponentially with the

addition of node, objects or events to the simulation model.

To provide the best of two worlds, some ha\;e taken the approach of hybrid
simulation into their siml]lalor software. In this case, discrete-event and analytical
simulation techniques are combined to provide detailed network simulation whilst
still running quickly. Some simulators allow control over the detail generated by the
simulator: turning up the level of detail increases run-time proportionally but scale it

back and run-time is shortened.

58

Chapter 4

4.2 Existing Network Simulators

The market for network simulators is quite wide and there are many simulators

available, each with their own features, ad ges and disadv. ses. Some
simulators are purpose-built and are very focused on a particular area of research and
can handle only a particular type of network but can handle it very well. Then there
are the general-purpose simulators that support a multitude of protocols, standards
and models thus making it suitable for simulating different types of networks. One
common feature between the simulators is that they base their simulation on the
discrete-event technique, although some do implement'cenain hybrid techniques for

better performance. The following section evaluates a few simulators available.

4.2.1 GloMoSim/Qualnet

GloMoSim is a scalable network simulator for wireless networks developed by the
UCLA Parallel Computing Library department. GloMoSim, which stands for Global
Mobile Information Systems Simulation Library, is built on UCLA's own parallel
simulation language called PARSEC which itself in written in C. The basic node
model in GloMoSim follows the 7-layered OSI architecture with standard application
interfaces (APIs) to be used between layers. This arrangement allows users to add

models to a specific layer without having to modify the rest (UCLA 2001).

GloMoSim runs simulations based on scripts that tefine the components in the
simulated network. It does not seem to offer any form of a graphical interface to
handle simulations but most other simulators do not either. This simulator is

developed specifically for mobile networks (hence the name sake) and does not

59

Chapter 4

provide much support for wired networks (as of the latest version). It also runs only

on UNIX-based machines.

GloMoSim v2.0 is freeware and downloadable by educational institutions that apply
for use of the software in research but this software has not been updated since its
last version released in year 2000. A commercial product derived from GloMoSim
called QualNet has since been developed that claims to be the fastest network
simulator available but this software requires a purchased license to install and

operate (although a 2-week evaluation version is available)

4.2.2 OPNET

OPNET is a commercial general purpose simulation program for modelling
communication systems including mobile, wired and wireless networks. Originally
developed at MIT in 1987 and touted as the first ever commercial simulator, it is now
being handled and further developed by OPNET Technologies. It is written in object-
oriented C/C++ using the hybrid simulation approach and offers a graphical interface
for running simulations in either Unix (Solaris, HPsUX) or Windows machines.
OPNET has the advantage of being able to offer a wide range of simulation models
for various protocols and models including vendor specific simulation models for
products from companies like CISCO, 3COM, Fore, Lucent, HP and Intel. The
included library seems to be the most complete and comprehensive set available out
of any of the simulators available in the market. The included documentation is also
very complete and covers most aspects of running, adapting and adding to the

simulator. -

60

Chapter 4

On the other hand, OPNET is an expensive piece of software and this is mainly due
to the licensing requirements met to include vendor specific products. A free research
version is available to those that qualify but the activation license timeout is in three
months from date of application (although it is renewable). Renewing the license to

continue using it is a hassle.

4.2.3 cnet
The ‘cnet' network simulator is developed at the School of Computer Science and
Software Engineering, University of Western Australia. Written in ANSI-C with
Tcl/Tk as its graphical front-end, cnet enables experimentation with various data-
link, network and transport layer networking protocols whilst providing a basic
application and physical layer (that also can be changed). Although it is a simulator,
its main use is in class work assignments in which this software is used to allow

undergraduate students to develop and test out their own protocols.

Similar to GloMoSim, cnet runs only in Unix,based environments but has the
advantage of being able to, offer a pretty comprehensive user interface in XWindows.
Another advantage is the small size of the program with the entire source tar package
weighing in at around 1.IMB only (version 2.0.9 dated 13™ May 2004) so the
demands on disk space are small. Documentation is rather_sparse though mainly
because the use of the software is taught in the university lectures and a complete

manual is not available.

61

Chapter 4

4.2.4 JavaSim

JavaSim is a discrete-event process-based simulator developed by the Department of
Computer Science, University of Newcastle upon Tyne UK. It is written using Java
and based on the university's own proprietary object-oriented simulation package

called C++SIM which was developed using C++.

Running in either Windows or Unix machines, JavaSim is easily the smallest
simulator package here with the source code package of 52.5kB only although
installation of the software still requires the Java compiler/runtime and a C/C++
compiler. There is no interface and simulations are run based on calls to the
respective Java functions built into the classes that are inherited from. The main
disadvantage is that JavaSim is in its infancy and does not support many functions
yet. Documentation is also sparse making it hard to understand the coding required in

the software.

4.2.5 NIST ATM/HFC Network Simulator

The NIST Simulator is discrete-event purpose built simulator meant for studying and
evaluating ATM (Asynchronous Transfer Mode) and HFC (Hybrid Fibre Coaxial)
networks. It is developed by the National Institute of Standards and Technology
(NIST) in the USA as a free tool to perform network planning and protocol analysis
of ATM/HFC networks without the expense of buiiding a real network (Golmie et al.
1998).

The NIST simulator only runs in Unix in the XWindows environments and provides

a graphical user interface to design and gxecute a simulation. The package is written

62

Chapter 4

in C with additional coding for the X environment. Unfortunately this simulator does
not meet the needs of this project as it is developed only for the specific type of

ATM/HFC network and does not support any other type.

4.2.6 NS

NS (which unsurprisingly stands for Network Simulator) is a simulator developed by
the Information Sciences Institute (ISI), University of Southern California (VINT
2003). Targeted mainly at networking research, NS is a discretf event general
purpose simulator with support for various networking protocols, topologies and
technologies. Throughout the years, the simulator has been through two major
revisions known simply as NSv1 and NSv2. Whilst further development in NSv1 has
stopped, NSv2 still continues to advance by incorporating new features and
supporting more networking technologies. Research funding for NS is currently
provided by DARPA (with SAMAN) and NSF (with CONSER) with contributions
from other researchers including those from the UCB Daedelus and CMU Monarch
projects and Sun Microsystems.

Running mainly on Unix based machines (works in Windows with Cygwin), NS also
does not have any form of a user interface built-in. Simulations are run based on
TCL scripts that can be written quickly or adapted from available scripts. Several
‘helper’ applications have been contributed by other developers to assist in using NS
and these include a graph plotter and analyser, topology generator and simulation
animator. There are also plugins available to port data to and from other programs

such as MATLAB and gnuplot.

63

Chapter 4

NS has an advantage of being freeware and is very modular in programming style
plus it supports many different protocols and models in the default package. Those
not included are usually available as add-on patches that incorporate the functionality
into NS once installed. Support and documentation is also abundant since many
research projects have been successfully performed using NS. The disadvantage of

,

NS is that it requires a strong background in C pr ing and also under g

in TCL programming. The modularity of the code makes adding features both a
blessing and a chore since it is hard to locate the specific file to alter amongst the
“thousands in the package. Once the particular file is found though, adding features is
easy and there is no need to worry about other parts of the program as long as the

added function/feature conforms to the programming style to ensure interoperability.

4.2.7 Summary
The simulators described above only represent a tiny proportion of the available
simulators in the market but are the ones regularly used in research and development

purposes and are easily obtainable. Each simulator was evaluated based on the

requirements of this project in terms of functionality, progr use,

support and code documentation. Features such as graphical interfaces and operating
system platform compatibility were not taken into account as it does not matter
much. Several other simulators were also evaluated including AdventNet but

. problems with installation and licensing cause it not to be included in this report.

The following table gives a side-by-side comparison of the simulators mentioned
above in terms of programming language used, documentation level, modularity of

code and model support.

64

Chapter 4

Table 4.2 — Summary of reviewed network simulators

Simulator License type Language — Documentation Code Simulation
modularity model support
GloMoSim Free C/PARSEC OK Yes Wireless only
OPNET Commercial ~ C/C++ Good Yes Good
cnet Free C/ Tel/Tk OK Yes Poor
JavaSim Free Java OK No Poor
NIST Free C Poor No ATM/HFC
ATM/HFC only
NS Free C/OTcl Good Yes Good

For this project, the NS simulator was chosen as the simulator mainly because of the
g 9

abundance of documentation available to refer to. The programmers help forums also

remain active with plenty of help and support available. Prior experience with the

simulator also contributed to the choosing of NS as the simulator here. The simulator

is also open source making the source code available entirely free for non-

commercial purposes.

The next section describes the features of the NS simulator version 2.19b which was

used in this thesis and the modules related to the work done. Note that “NS™ actually

refers to the NS v2 of the simulator package unlike other research efforts that prefer

to use either the term “NS-2”, “ns2” or other variations. This style mirrors how it is

referred to in the documentation and write-ups provided by the developers at ISI.

65

Chapter 4

4.3 Mobile Networking Simulations in NS

The wireless model in NS was originally offered as an extension to the default

package by the CMU Monarch Group (CMU 1999). As of versions 2.18 and up of
the simulator, the model has been ported over and included as part of the default
distribution package. Changes to the original CMU code were made by contributors

and developers at ISI to ensure interoperability with other existing modules in NS.

The default wireless model in NS basically revolves around the mobile node with
additional features to allow simulations of multi-hop ad-hoc networks, wireless
LANSs and such (VINT 2003). The mobile node class (MobileNode.{cc,h}) is derived
from the parent class Node and thus inherits ali the properties of a basic node. It
differs from the basic node through added functionalities such as node movement,
position logging and transmission/receiving operations to work with the wireless

medium in wireless simulations.

4.3.1 The MobileNode Structure and Organization

The following figure 4.1 shows a logical representation of how the mobile nodes are
connected together in an NS simulation. Each node is a separate and independent
object, responsible for computing its own position, movement and velocity over
time. Each node can have multiple network interfaces that are connected to the
channel. The channel functions as conduits to distribute packets to every mobile
node connected to it and actually represents the particular frequency, modulation and

coding scheme used for transmission.

66

Chapter 4

There is no actual physical pipeline as shown in the figure (shown as the channel) to
which the nodes connect to, instead the nodes use a radio propagation model to

transmit and receive packets over the air using radio waves.

rMOblle Node I l Mobile Node |

I Mobile Node

Figure 4.1 — Repr ion of ions bety nodes and the channel

As with all objects in NS, the MobileNode object is split into its C++ and OTcl parts.
Mobility features are implemented using C++ whilst the creation and plumbing of
the network stack is done using OTcl. To create a mobile node the following

procedures are called in the simulation script while passing appropriate values.

$ns_ node_config -adhocRouting $opt (adhoc) \
—ll?‘ype Sopt (11) \
-macType $opt (mac) \
-ifqType Sopt(ifqg) \
-ifqLen $opt(ifglen) \
-antType $opt(ant) \ =
-propType S$opt (prop) \
-phyType $opt (netif) \
-channel [new SopL(c};an)] \
-topoInstance $topo \

-agentTrace ON-\

67

Chapter 4

-routerTrace ON \

-macTrace ON \

-movementTrace OFF
set node_(0) [$ns_ node]

This creates a single basic mobile node that now looks like the diagram below. This

is the node structure used in this thesis.

Port
demux, ,6
Port number @

255

v

Address

up-target
ﬁLlnk Layer |- table ARP

down-target

Interface
Queue mac

down-target|
B

. uptarget |MAC Layer’l

up-target down-target
Network ‘
propagation Interface
-
up-target channel
- i

Figure 4.2 — Mobile node structure in NS

68

Chapter 4

A new mobile node in NS is defined in the file mobilenode.cc and is created and
plumbed together using OTcl in mobilenode.h. When a new node is created in OTcl,

the network stack for the node is set up as below

Local variables
set nullAgent [$ns_ set nullAgent]
set netif $netif ($t)
set mac $mac_($t)
set ifqg $ifqg_($t)

set 11 $11_($t) -

=

Initialise ARP table only once

if (Sarptable_ == “"} { .
set arptable [new ARPTable $self $mac)
set drpT [cmu-trace Drop “IFQ” $self]
$arptable_ drop-target $drpT

)

=

Link Layer

$11 arptable S$arptable_
$11 mac $mac

$11 up-target ([$self entry]

$11 down-target $ifq

-~

Interface Quete

$ifq target S$mac

$ifq set glim_ $qglen

set drpT [cmu-trace Drop “IFQ” $self]

$ifq drop-target $drpT

=

Mac Layer
$mac netif S$netif -
$mac up-target $11

$mac down-target $netif

69

Chapter 4

$mac nodes S$opt (nn)

=

Network Interface

$netif channel $channel

$netif up-target $mac

$netif propagation $pmodel

$netif node $self ;# bind node <---> interface

$netif antenna Sant_($t) ;# attach antenna

=

Physical Channel

$channel add $netif ;# add to list of interfaces

From the cod:—: fragment above, $opr(xx) variables set in the node_config procedure
on the previous page are used to create a null agent, network interface, MAC, link
layer and interface queue. These components are connected either as a down-target
or up-target of each other. It is clear that the layer above the MAC is the link layer as
stated in the up-targer command whilst the down-target is the network interface.
Each network interface has a channel, propagation type and an up-target of the MAC
layer. The present node (the one being created) is added to the network interface with
the command node and an antenna is attached. Finally, the interface is added to the

channel such as in figure 4.1.

4.3.2 Outgoing and Incoming Packets

During simulations, the path taken through the layers depend on the type of packet
being sent o. teceived. Packets sent by a source agent on the mobile node are handed
to the entry point of the node, which passes them to the address demultiplexer. The
destination address of the packet is obtained-and, if it matches the node's own
address, passes the packet up to the port demultiplexer to deliver it to the right

application. If the destination is another node, they are handed down to the routing
70

Chapter 4

protocol. The routing protocol sets the next_hop field in the packet's common header
to the address of the next node the packet should be sent to. If the next hop address is
an IP address, the link layer object then proceeds to query the ARP object to obtain
the hardware address. If the ARP does not have any information about the next hop,
the packet is queued and an ARP request packet is sent using a broadcast address to
perform address resolution. Once the hardware address is known, the packet is set
and inserted into the network interface queue (IFQ). The MAC object removes
packets from the IFQ head and sends them onto the channel using the interface when
appropriate. In the network interface, the packet is stamped with properties such as
the transmission power and node location, and then puts the packet onto the channel

when a copy is delivered to all the nodes on the channel. -

The receiving process occurs when copies of the sent packet arrives at a node after an
allotted time (after propagation time controlled by the scheduler). Upon receipt, the
network interface stamps the packet header with the receiving node's properties and
invokes the propagation model. The propagation model uses the transmit and receive
header stamps plus the properties of the receiving node's interface to determine the
power with which the interface will receive the ;JackeL If adequate, the packet is
successfully captured and ilanded to the MAC layer. At the MAC layer, if the packet
is collision and error free, the packet is passed to the node's entry point. The packet is
demultiplexed and checked to see if it has arrived at the destination node which will
hand the packet to the proper sink agent at the specific port. If not, the packet is sent
to the default target address and the routing agent called to assign the next hop for

the packet before passing it back to the link layer.

71

Chapter 4

4.3.3 Ad-hoc Routing Models in NS

The default NS package includes four ad-hoc routing protocols : DSDV, DSV,
AODV and TORA. Of these four, DSR, AODV and TORA are on-demand protocols
whilst DSDV is table driven. In table driven routing, consistent and up-to-date
routing information is maintained at all nodes whereas in on-demand routing, routes
are only created when required by the source node (Misra 2000). This section briefly

explains how each protocol works.

Dynamit Destination-Sequenced Distance-Vector Routing Protocol (DSDV)

In this routing protocol, every mobile node maintains a routing table that lists all
available destinations and the routes to get there (nunibcr of hops and sequence
number). The nodes periodically transmit their routing tables to their immediate
neighbours to update the routing information. These updates may also be triggered
by any significant change in the network such as a node disappearing and bringing
down a link. The updates themselves can be one of two types — a full dump which
sends the entire routing table or an incremental update that sends only routing table
entries that have changed since the last update.

The advantage of this pn;tocol is that a node immediately knows the route to a
destination by referring to its routing table and does not need to wait while the node
sends out a route request. The disadvantage with this protocol is the task of keeping
the routing table u;-to-datc. In a fast changing network, updates can be sent so often
that it would take up the precious available bandwidth. There is also a problem of

determining when to send an update.

72

Chapter 4

Dynamic Source Routing Protocol (DSR)

DSR is a source routed on-demand routing protocol. Every node maintains a cache of
routes that is aware of and inserts or updates the cache when it learns of new ones.
When a source node wants to send a packet to a destination, it first searches its route
cache to determine if already contains a route to the destination. If an unexpired route
exists, then that route is used. Else, if the route is unavailable or expired, the node
invokes the route discovery procedure by broadcasting a route request (RREQ)
packet. Each intermediate node checks the packet to see whether it knows a route to
the destination. If it does not, it appends its address to the route record of the packet
and forwards the RREQ packet to its neighbours. To limit the propagation of RREQ
packets, a node only processes RREQ packets it has not already received before. A
route reply is generated when the destination itself or an intermediate node with route
information to the destination receives the RREQ packet. At the source, the route to
the destination is read in reverse from the list of appended addresses in this reply

packet.

Ad-hoc On-demand Distance Vector Routing Protocol (AODV)

AODV attempts to improve the table-driven DSD{/ protocol through minimizing the
number of request broadc'asls by creating routes only when required as opposed to
DSDV that maintains the list of all routes. It uses a combination of both DSDV and
DSR protocols. It uses the route-discovery and maintenance procedures from DSR
but uses hop-by-hop routing, sequence numbers and beacons of DSDV. A hop-by-
hop state of the route is stored in each node that is involved in the route as compared

with the whole route being stored at the source in DSR.

73

Chapter 4

Temporally Ordered Routing Algorithm (TORA)

TORA uses a “link reversal” algorithm to provide an on-demand but highly adaptive,
efficient and scalable method of discovering and maintaining multiple routes to a
destination. The main feature of TORA is that the control messages used are
localised to a small set of nodes around the occurrence of a topological change (Park
1997). The protocol has three functions : route creation, route maintenance and route

erasure.

Route creation is done using QRY and UPD packets. The algorithm starts with the
'height' (propagation ordering parameter of a node) of the destination set at 0 and the
others set at NULL. The source sends the QRY packet with the destination node ID.
Any node with a non-NULL height responds with a UPD packet with its height in it.
Nodes receiving this UPD packet set its own height to one more above the value in

the packet. This creates an acyclic route from the source to the destination.

If a link is broken, route maintenance is needed to re-establish the route to the
destination. When the last downstream link of a node fails, it generates a new
reference level and propagates this new informalit;n to the neighbouring nodes. The
links then have their heig;ns reversed to reflect the change thus reversing the flow
direction of the links to a node. In route erasure, TORA floods a broadcast CLR

packet throughout the network to erase invalid routes.

-~

74

Chapter 4

4.3.4 Function Calls and Module/Layer Relationship in NS

When running wireless simulations, there are different paths between the different

layers that the code can follow in NS as depicted in section 4.3.2. To transmit or

receive a packet, numerous function calls are made at different places, layers and

times and each has its own task it must perform. An extremely simplified sample

trace of a data packet being sent involving the MAC and PHY layers only is depicted

below as an example.

1.

When a data packet is received by the MAC::recv() function in the MAC
layer, it is checked to determine the direction of the packet. If the direction is
DOWN, the packet originated from an upper layer and is meant to be sent

out. The packet is then passed to the MAC::send() function.

. The MAC::sendDATA() and MAC::sendRTS() functions are called which

builds the MAC header (for the data packet) and a corresponding RTS packet.
The data packet with the MAC header is stored as pktTx_ whilst the RTS

packet is stored as pkiRTS .

. Checks are made on the medium to see if idle and on the defer and backoff

timers to ensure no other packet is being:transmitted. If suitable, the defer
timer is set (DIFS + slot time).

When the defer timer expires, the MAC::check_pktRTS() function checks if
any RTS packet is waiting to be sent. If yes, then the TRANSMIT function is

called and the RTS packet is sent.

. The packet is passed to the PHY layer using downtarget_. The send _timer()

and interface timer, mhIF_ is started and the x_active_ flag is then set

indicating the channel is busy.

75

Chapter 4

6. When a CTS packet is received, the MAC::recv() function is called again. If
the packet is successfully captured (after the time period set by recv_timer()
elapses), the MAC::recv_CTS() is called indicating that the destination node
is ready to receive data.

7. Transmission then continues at the MAC layer as it prepares to send the data
packet pktTx_. Similar to sending the RTS packet, checks for idle medium
and idle defer and backoff timers are made. If suitable, the defer time is set
for the data packet.

8. Once the defer timer expires, the TRANSMIT function is called once again to
pass the data packet, pktTx_ to the PHY layer to be transmitted.

9. Upon receiving an ACK for the data packet sent, the same process as above
repeats but this time the MAC::recvACK() is called to indicate successful

transmission of the packet thus completing a round of transmission.

Note that many functions and tasks performed are not depicted in the example such
as timer calls, queue checks, variable settings and such. It is also assumed that a
perfect uninterrupted delivery of the packet occurs with no congestion, collision or
errors experienced, all situations of which are sin;ulaled as additional function calls
within NS. In addition, t}'le events are depicted as a continuous sequence when in
actual fact there are many delays between the time the RTS is sent, the CTS is
received and when the data is sent and acknowledged of which other events can
occur in between, all of which are ‘controlled by timers and schedulers. Anyhow, it is
clear that implementing a new function into NS would involve many parts of code at
different places to ensure it works properly and yet does not adversely affect the

other functions in NS.

76

