Chapter 5

CHAPTER 5

SYSTEM IMPLEMENTATION

This chapter details a proposal to solve the performance issues in WLANs using
fuzzy logic. This is followed by the coding work done and steps taken to implement
the proposed changes to the wireless model in NS. Since the code is too long to
include in its entirety here, small sections are shown instead to highlight particular
points of interest in the code whenever required. However, diff files of the

implemented code are included in the appendix section for additional reference.

5.1 Prior Research into Improving WLAN Performance

The amount of research done in the wireless field is ever increasing due to its rising
popularity but alas, the majority of them only;entail typical evaluations and/or
comparisons of the various wireless network protocols and standards. This includes
the usual measurement of performance for the various types of network architectures,
routing types and traffic types over a WLAN. Nevertheless, there has been a number
of research works done that involve work into improving the performance and not
just evaluating it per se.

Zygmunt J. Haas and Marc R. Pearlman attempts to improve the performance of

WLANSs by improving the quality of routes between nodes in an ad hoc network.

77

Chapter 5

Their work involves the routing layer and implements a new routing protocol called
the Zone Routing Protocol (ZRP) which is a hybrid between proactive and reactive
ad hoc routing protocols (Haas 1997, Haas & Pearlman 1999). ZRP supports
proactive discovery and maintenance of routes within a specified limited routing
zone through its /ntrazone Routing Protocol (IARP). The routing zone is determined
as the number of hops from a particular node and is usually around two hops. This
decreases the amount of periodic updates required to the nodes within the routing
zone only and not depend on the size of the entire network which might be large.

While IARP maintains routes within the routing zone, the Interzone Routing
Protocol (IERP) has the task of finding routes to nodes exceeding the routing zone
radius. Instead of invoking the usual flood-search query and response protocols to
locate routes, the IERP uses bordercasting which only involves the perimeter nodes
of a routing zone. These perimeter nodes use IARP to check if the destination is
within its routing zone. If so, a reply is sent back to the source indicating the route. If

not, the peripheral node executes the same IERP procedure and bordercasts to its

peripheral nodes. Any repeated queries are considered redundant and dropped using
:

Early Termination even though it was bordercasted by a different nodes because

each query is numbered and thus prevents repeated queries and helps reduce wasted

transmissions and bandwidth which could have been used for other purposes.

Another research project using the routing layer is the Explicit Link Failure
Notification (ELFN) by Gavin Holland and Nitin Vaidya which relies on information
from the DSR ad hoc routing protocol (Holland.& Vaidya 2002). The original DSR

“route failure” message is modified to carry the ELFN message which is similar to a

78

Chapter 5

“unreachable destination” message in ICMP. Once the TCP source receives this
message from a node, it proceeds to disable all its retransmission timers and enters a
standby mode to prevent any further attempts to transmit to the node involved.
Periodically, a route request packet is sent to probe the network to see if a route to
the node is re-established. If so, the node leaves standby mode, restores

retransmission timers and resumes transmission

The research of Ajay Singh and Sridhar Iyer involves the TCP layer instead with
their implementation called ATCP (or Adaptation of TCP) which serves its functions
between the TCP and IP layers (Singh & Iyer 2002). ATCP attempts to alleviate the

degrading effect of mobility on TCP performance by ﬁsing feedback information

"

provided by the network layer, specifically the ion and

m and r ission timeouts (RTO) to avoid the congestion control

mechanisms of TCP. The ATCP mechanism is complex and is dependent on whether

the node is mobile or static and handles the feedback information differently.

From a mobile node, if a disconnection event is received, any outgoing packet

3

queues and the retransmission timer (RTX) are stopped. If there are no transmissions
but the node is awaiting 'am ACK, then the RTX is unchanged and left for a RTO
event. Upon receiving a connection event, the RTX is reset and any outstanding
transmissions are continued. If the node was awaiting an ACK and an RTO event has
occurred, the previous packets are retransmitted else it continues waiting forl‘the RTO
event. Upon an RTO event, ATCP checks to see if a disconnection has occurred. If

50, the slow start threshold (SST) is set to current the congestion window (CW) value

and CW to one, else the lost packets are retransmitted without any changes to SST or

79

Chapter 5

CW. If in a static node, upon receiving a disconnection event, the network
connectivity status is updated. Upon a connection event, two ACKs are sent and the
advertised window in each is set such that the RTX in a mobile node is first halted
without shrinking the CW and then retransmission of unacknowledged packets is
begun. These actions prevent any congestion control measures from invoking

prematurely due to disconnection events.

Feng Wang and Yongguang Zhang’s work also focus on the TCP layer to improve ad

hoc’network performance with their impl ion TCP-D ion of Out-of-order

Response (TCP-DOORS) (Wang & Zhang 2002). TCP-DOORS relies on the
sequence number of a TCP packet or ACK packet to determine the current network
congestion situation. Their argument is that with TCP, once a packet is delivered out
of order, duplicate ACKs are sent to acknowledge received packets causing the
sender to reduce its CW and SST by half and reset the RTO. The case becomes
worse if the source timeouts while waiting for an ACK because this results in a slow
start condition and thus deteriorating the TCP throughput. With TCP-DOORS, once
an out-of-order condition is detected at either the source (through the ACK sequence

3

number) or destination (TCP packet number), it can take one of two possible actions.
The first is just by halting the usual congestion control mechanisms temporarily so
that the CW, SST and RTO values are kept at its current state. The second action sets
lhe‘-slalc at the sender at values prior to congestion was detected instead of fully
resetting or halving them. The rationale behind either action is that the congestion
that occurred has since resolved and therefore A.CKs can be delivered but only in the

wrong order. The congestion is assumed to be result of a route change and since

80

Chapter 5

ACKs have resumed but only in the wrong order therefore TCP should not have to

invoke slow start or linear window recovery.

Fabius Klemm and Zhenqgiang Ye take an alternative approach to improving ad hoc
WLAN performance by altering the MAC layer with their implementation of
Persistent MAC and Proactive Link Management (Klemm et al. 2003). To improve
TCP performance, Persistent MAC keeps track of neighbouring nodes with active
routes based on the signal strengths of transmissions. This information informs a
node about neighbouring nodes that are still within transmission range. Using this
information, a node can then attempt to identify false link failures caused by
congestion and try to re-establish connections with nodes using seven additional
RTS-CTS handshakes. The reasons behind this action is that on a congested network,
a node could be overhearing transmissions from other nodes and cannot reply to the
RTS packets because it is being blocked from doing so. Extending the number of
times to retry the RTS-CTS handshake would then increase the chances of the

handshake succeeding.

In Proactive Link Management, the information o} signal strengths between nodes is
put to use once again. O;we the signal strength drops below a certain level, it is
assumed to be going out of range and therefore will lead to a route failure. It then
stimulates the PHY layer to slightly increase the transmission power temporarily in
attempt to keep the link to the neighbour alive. While the link is still active, a rl<;u!e

request is then initiated to find a new route to the node before the current route fails

in hopes of maintaining a continuous transmission path to the destination.

81

Chapter 5

While it is pretty much impossible to fully control the levels of congestion in a
wireless network, it is possible however to resolve most of the problems that arise
from it. As shown above, prior research has attempts to improve the performance of
WLANSs by manipulating the transport, routing, MAC or PHY layers. For the most
part, the strategies are typically designed for ad hoc networks because they lack the
AP component found in infrastructured networks to help distinguish between losses
caused by errors or congestion. The proposal for this thesis therefore takes a similar
approach to improve ad hoc network performance by adapting existing MAC and
PHY layers as well as combining them with several other strategies and concepts

acquired from the research above.

The proposed method to improve WLAN transmission performance makes use of
information obtained from the PHY layer — namely the signal strength of
transmissions. The signal strengths of transmissions between nodes is particularly
revealing since the signal strength is inversely proportional to the distance between
the nodes. The information collected is stored at every node in a neighbour
information table very much similar to the one implemented in the Zone Routing
:
Protocol. Entries into the table however are only made for immediate neighbouring
nodes and not for scpara'te routes or next hop destinations therefore reducing the
amount of entries required. In fact the maximum number of entries in the table would
actually be the number of nodes in the network since that would be the highest
amount olf neighbouring nodes. Additionally, only successful transmissions are kept
as a record in a neighbours table at each node. This would reduce memory and

system demands at the node and simplify processing of the information table.

82

Chapter 5

When a node fails during the RTS-CTS handshake, the MAC layer at the node could
then figure out as to whether the failure was caused by an actual link failure (i.e.
nodes moving out of range) or due to congestion using the recorded signal strengths.
If the cause is due to link failure, then MAC abandons any further attempt to retry
communicating with the node. The link layer could then be informed and depending
on routing protocol used, the route is either removed from the routing table or a new
route request is invoked. If the communicating nodes are deemed to be still within
range, the failure is assumed to be caused by congestion. Since mobile nodes in an
IEEE 802.11b network have a large interference range of around 480 metres radius
(different manufacturers will have different ranges), it can overhear transmissions
from quite a distance away and set its NAV to busy because of the exposed node
problem. In this case, the MAC layer would then continue its attempts to retransmit
the RTS in hopes that a handshake connection can be made to allow transmissions to

proceed.

The default number of times to attempt the handshake is seven times but retrying an
additional seven times (as in Persistent MAC) could be wasteful of both time and
bandwidth, so a fuzzy logic controller is implemer;ted into the model to evaluate the
network situation and a;laptively attempt the RTS retransmissions. When the
handshake between two nodes fail, the information stored in the neighbour table is
recalled and used to determine the likelihood that the nodes experienced congestion
or actual link failure. Further details about the implementation of this proposal is :

described in the next sections.

83

Chapter 5

5.2 Implementing Changes into NS

The work in this project can be roughly divided into 2 phases, namely, the
incorporation of a IEEE 802.11b wireless network model and the fuzzy logic
controller within that model. The following sections describe the modifications made
to the main files that were involved. Other files in the source hierarchy were also
modified but only slightly to the extent of adding function pre-headers or variable

declarations so that they can be inherited and accessed in other files.

The NS'v2.1b9apackage by default only supports the original IEEE 802.11 wireless
network model which is limited to bandwidths of 2Mbps and 1Mbps. Since this type
of network is rarely used, work on implementing fuzzy logic in it is not as realistic
and practical. Thus a new wireless simulation model is introduced into NS by
incorporating the IEEE 802.11b protocol with support for transfer rates of up to
11Mbps. Most of the changes were made to the MAC and PHY modules in NS based
on IEEE 802.11b published standards and documentations. Several of these
modifications are based on a patch source offered by Siddhardtha Saha but with
changes to incorporate additional information made available about inter-channel

3

interference.

The newer IEEE 802.11a and 802.11g standards are avoided since it uses the ODFM
technique for transmitting thus requiring a full rewrite of many portions of code since
OFDM has yetl{o be implemented into this version of NS. On the other hand, the
802.11b standard is mostly based on the original 802.11 standard and thus the models
can be readily inherited from those already pre.sem in the simulation package with

only several changes required to certain sections in the code.

84

Chapter 5

5.2.1 Implementing the IEEE 802.11b MAC Layer
Changes in the MAC layer have been made to the mac-802_11.cc and mac-802 _11.h

files in the NS source. First changes are to include the revisions in several time
periods used in calculating arrivals and departures of packets to the MAC layer based
on the published 1999 IEEE 802.11 protocol and 802.11b supplement. In the

protocol, the SIFS and slot times are fixed per physical layer (IEEE 1999a) follows:

SIFS = RxRFDelay + RxPLPCDelay + MacProcessingDelay +
RxTxTurnaroundTime
SlotTime = CCATime + RxTxTurnaroundTime + AirPropagationTime +

MacProcessingDelay

From the SIFS and slot times, the PIFS and DIFS are derived through the following

equations:
PIFS = SIFS + SlotTime

DIFS = SIFS + 2 xSlotTime

The final EIFS is derived from both DIFS and SIFS plus the time it takes to deliver

one ACK control frame at 1Mbps following the equation:

EIFS = SIFS +(ACKsize x 8)+ Preamblelength + PLCPHeaderLength + DIFS

where ACKsize is given in bytes and “(4CKsize x 8) bits + Preamblelength +

PLCPHeaderLength + DIFS" is measured in microseconds.

85

Chapter 5

The IEEE has also predetermined the values of the certain constants (IEEE 1999a)
although several of them have been left open to user implementation. The values

used in the model are as follows

Table 5.1 — PHY characteristics as given in IEEE 802.11 standard

Characteristic Time value
SlotTime 201s -
SIFSTime 10us
CCATime <15u5
* RxTxTurnaroundTime <Sus
TxPLCPDelay Any value as long as the requirements of

RxTxTurnaroundTime is met
RxPLCPDelay Any value as long as the requirements of
RxTxTurnaroundTime is met
RxRFDelay Any value as long as the requirements of
SIFSTime and CCATime is met

AirPropagationTime lus
MACProcessingDelay Ops (Not applicable)
Preamblelength 144ps
PLCPHeaderLength 48us

To implement the changes, 5 new constants are defined in the MAC model header
file as explained in brief below

DSSS_RxRFDelay — Time delay required for transmission to reach receiving end
DSSS_RxPLPCDelay — Time delay during which the physical layer convergence
protocol operates to create a PPDU.

DSSS_MACProcessingDelay — A constant value used to take into account the delay

caused by MAC processing. .

86

Chapter 5

DSSS_AirPropagationTime — The time a packet takes to propagate one way across
the network.
MAC _AIR_PROPAGATION CONST — Constant value set at 2 to represent a round

trip of propagation time.

The original constant variable declared for DSSS SlotTime is replaced with the
appropriate values as in the given equation for slot time. DSSS_S/FSTime is removed
entirely and the sifs_ variable is instead initialised in the class constructor. The two

sections of code involved are as follows with the changes highlighted in grey.

static PHY MIB PMIB = {
DSSS_CWMin, DSSS_CWMax, DSSS CCATime '+ DSSSIRXTXTHrnaroundnimeny
DSSs_AirPropagationTime'+ DSSS MACProcessingDeldy, DSSS_CCATime,
DSSS_RxTxTurnaroundTime, DSSS_PreambleLength,
DSSS_PLCPHeaderLength, DSSS_PLCPDataRate, DSSSHRXRFDELEY;
Dsss_RxPLPCDelay/DSSSIMACProcessingDelay, T DSSs AALEPropaga tibnTife

Mac802_11::Mac802_11(......)

// Other lines of code in constructor.........

// sifs = phymib ->SIFSTime; // This is original code
sifs = phymib_->RxRFDelay 't phymib_->RxPLECDelay.
phymib_->MACProcessingDelay + phymib =>RzIXTurnaroundTime;

// Rest of the code.........

}

87

Chapter 5

The other major change to the MAC layer is in the function that keeps track of the
RTS retransmissions. In the original code when the RetransmitRTS function is called,
the ssrc_ counter is incremented then checked. If the number exceeds the constant
variable ShortRetryLimit which is by default set at 7 following the IEEE 802.11b
protocol, the RTS packet is dropped and the contention window is reset. If the retry
limit has not been reached, the RTS packet is prepared to be retransmitted by
calculating the backoff time using the contention window value (cw_) after checking

that the medium is idle.

In the modified code, the original version of this RetransmitRTS function is retained
and can be accessed by setting the variable fuzzyflg _in the Tcl simulation script with
the following statement (refer page 134, Appendix A):

Mac/802_11 set fuzzylogic_ 0

This statement is evaluated when the class constructor is called to set the fuzzyflg_
variable to 0 or 1 to disable or enable the fuzzy logic code respectively. Doing this
allows simulations to be run either with or without the fuzzy logic code without

requiring repeated editing, compilation and linking of the code.

When the fuzzyflg_is trué, the fuzzy logic control code is executed. The code first
determines if any additional retransmissions other than the basic seven have been
performed by checking a variable called retryflg_ which is always 0 unless the logic
code has already been execlted. If true, then the RTS packet is discarded the usual
way and all ssrc_, retryflg and cw_ counters are reset. If false, then the code
proceeds to evaluate the surrounding conditions to determine if any extra
retransmissions are required. This step ensures that the code does not enter an infinite

loop in retrying the RTS retransmissions.

88

Chapter 5

To evaluate the neighbourhood situation, a function evalretry is called. This function
is coded in the PHY model files and is called using the netif downtarget from the
MAC model to obtain the handle of the respective physical layer for each MAC. The
evalRetry function returns an unsigned integer value stating the number of times to
retry transmitting the RTS packet. Further details of this function is in the section

below describing the PHY layer.

When the integer is returned, if it is more than zero then retransmission is needed
else the RTS packet is discarded. To force retransmissions, the ssrc_ variable is reset
by subtracting the number of times to retry. This is followed by setting the retryflg
indicating that it had entered additional retransmission and resetting the contention
window. If during the RTS retransmissions a CTS is received, then the retryflg_is
reset to ensure it does not impede the next round to RTS-CTS exchange. The

remainder of the class is not altered in any way.

5.2.2 Implementing IEEE 802.11b Channels

The original channel model in NS does not handle interference between the 14
available channels in the ISM band used for transmission. The semantics of the
original NS channel modéi also differs slightly from the physical channels that are
used in 802.11b. To overcome this difference, the Channel class in channel.cc and
channel.h files have been subclassed into Ch 80211 so as not to interfere with the
original WirelessChannel subclass. The original implementation uses a fixed variable
delay to determine the time difference between when a node sends a packet and the
time the destination node receives it. This period of time is used by the scheduler to

manage when a node calls its sendup function to indicate it has received a packet.

89

Chapter 5

This method is rather inaccurate because the delay should increase as the node moves

apart and decrease as they approach each other instead of a fixed value.

In the modification, the static variable is replaced by a call to the function
gel_pdelay. This function uses an available function called propdelay from the class
MobileNode to calculate the delay value. If the two nodes are on top of each other
due to calculation, an additional constant value in DBL_EPSILON is used to 'move'
the nodes fractionally apart so as to prevent the delay from being zero to prevent

multiplication errors. The remainderof this subclass remains the same.

5.2.3 Implementing the IEEE 802.11b Physical Layer

The incorporate the new model, the original WirelessPhy class in the files wireless-
phy.{cc,h} is subclassed into Wireless 802 11 _Phy.{cc,h} to include the code for
channel selection, channel interference and additional fuzzy logic coding. Other
functions not overridden in this subclass remain the same and are inherited from the

original WirelessPhy class.

To incorporate the channel selection feature, a new protected variable
channel_number_ is added and its value is bound in the class constructor to the
default value of 10. Any number between 1 and 14 can be used, but channel number
10 is set as the default number in the ns-default.tcl file since vendors often set that
value out of the factory. From this thannel number, the frequency channel to be used
is obtained for the freq_ and lambda_ variables used in later functions. The
frequency channels have been predetermined in"the IEEE protocol and are obtained
by calling the function getFreqFromChannelNumber while passing it the channel

number. Illegal channel numbers are rejected and the simulation fails following the

90

Chapter 5

coding style in NS once errors occur. The channel number can be changed by setting
the channel number variable before a node is created with the following commands

in the simulation script.
Phy/WirelessPhy/Wireless_802_l1_Phy set channel number_ 2
set newnode [$ns_ node]

Other variables inherited from WirelessPhy remain the same and are created when

the parent class is referenced.

Whenever a packet is received from the channel, the sendup function in the PHY

layer is called. From here the power of the i ing packet is calculated and
compared against two thresholds; the carrier sense threshold (CSThresh) and
receiving threshold (RXThresh). The carrier sense threshold signifies the range in
which a node can overhear a transmission but cannot receive a packet successfully
whereas the receiving threshold is the minimum power a packet must reach to be
captured successfully. The original sendup function in WirelessPhy is overridden in
the new subclass derived from it to add several new functions such as the code to

store a neighbour node information table.

The first function, calcChangedPr, is added to determine inter-channel interference.
Three variables are passed as parameters to this function — the incoming packet's
power and the destination and source node's lambda_ values. From here, the channel
numbers are reverse-calculated and the amount of interference experienced is
obtained. The interference amount is based on the results obtained from experiments
conducted by Cirond Technologies Inc. in their unpublished white paper about
channel interference in IEEE 802.11b networks (Cirond 2002). Although the actual

calculation should take into account many factors to determine the actual amount of

91

Chapter 5

interference, the code written takes the easier approach by assuming the amount of
power loss is in relation to the amount of interference experienced by node
depending on the channel difference as in the table given below (Cirond 2002). Thus,
the assumption is that a 27% of interference results in a loss of 27% of power. This is
a huge assumption but one that will not impact the results of the end simulation at all
because all the nodes will use the same channel when running in ad-hoc mode. The
code is therefore implemented for simulation model completeness purposes only and

facilitates future development.

Table 5.2 - Interference amounts between channels

Channel Interference Actual power
difference experienced received (%)
1 0.7272 27.28
2 0.2714 72.86
3 0.0375 96.25
4 0.0054 99.46
5 0.0008 99.92
6 0.0002 99.98
7 0 100.0
8 0 ’ 100.0
9 - 0 100.0
10 0 100.0

To create a neighbour information table, a struct called neighbors_ (American
spelling for variables is maintained f;;r consistency with other variables in the
simulator) is added to the wireless-phy.h header file. It stores the values for a node's
neighbours ID, the two most recent distances n.leasurcd between the nodes and the

transmission power of successfully received packets from the respective nodes.

92

Chapter 5

When the Wireless 802 11 Phy constructor is called, a corresponding neighbors

struct object is created so that each node has its own neighbour table. The 'table' is in
fact a linked list which is the method used in NS models to store information about
multiple nodes such as in routing tables as opposed to using multi-dimensional
arrays. Neighbour node entries in the table are updated accordingly whenever a
packet is successfully received by a node from the channel (i.e. when the packet is
above RxThresh and is successfully captured without errors and collisions). The

pseudocode for the new sendup function is as follows

Wireless_802_11_Phy::Sendup (Incoming packet as P)
{
Get current time and node's information
Get handle to node's neighbour table
If
{ No table exists, create new table set to null values }
else
{ Calculate channel interference
Calculate incoming packet P's transmission power as Pr
If Pr does not meet CSThresh R
Discard packet and exit Sendup function
If Pr does not n:eet RXThresh
Set packet header to indicate receiving ERROR
Record/Update neighbour node information in table}

Capture packet and inform next layer

93

Chapter 5

Only the time, tr ission power and di values are recorded for each node in
the table. The transmission power is already provided in Pr and what remains is just
to log this value each time it exceeds the RxThresh threshold, indicating that a
transmission succeeded. To obtain the time value, a call to the global scheduler is
made which returns the time the packet is received and is stored in the variable
currtime_ in the neighbor_ struct. Any present value in currtime is moved to
oldtime_ thus making the entries in the neighbour table always hold the last two

transmissions.

The same procedure is made to record the distances between the nodes except a call
to the function CalcDistance is made to determine the current distance between the
nodes. CalcDistance uses the formula from the free-space propagation model to
calculate this value and this function is actually based on the Pr function. Using this

propagation model, the distance, d, between the nodes can be calculated as follows:

where P, is the default transmission power, P, the received signal strength, G, and G,

are the gains of the itter and receiver; 1 is the wavelength and L is the

system loss experienced. The values of G, G, Zand L are constants in the NS

simulator and are based on an Orinoco wireless card specifications (Lucent 2000).
Changing to a different wireless network adapter’s specifications only requires the
. =~ . . . PR
appropriate changes to these constants to match the given specifications. Similar to
recording the power values, the last two successful transmissions have their distance

recorded into currdistance_ and olddistance_. An example of the code for updating a

94

Chapter 5

neighbour node’s information is shown below: The initial for() loop is responsible

for locating the correct entry in the link list to updated.

Time now=Scheduler::instance().clock();

for (ns = neighbors_ ; ns != NULL ; ns ns->next_) {
if (ns->nnode_ == p->txinfo_.getNode ()->nodeid()) {
ns->oldtime_ = ns->currtime ; // Backup previous time
ns->currtime_ = now; // Replace current time
ns->oldrcvdpwr_ = ns->currrcvdpwr_;
ns->currrcvdpwr_ = Pr; // Store rcvd pkt pr
ns->olddistance_ = ns->currdistance ; // Previous distance

ns->currdistance_= propagation_->CalcDistance (&p->txinfo_,

&s, this, Pr); // Insert new distance

If the for loop fails to locate a matching entry, then a new entry is added to the table.
Similarly, when the table is newly created and no information exists, an entry is
made into the table instead of updating existing entries. The information stored in the

neighbour table is used in the fuzzy logic code as explained in the following section.

5.3 Incorporating Fuzzy Logic Control

The fuzzy logic code is separated into the MAC and PHY layer modules in NS to
simplify and reduce function calls and variable passing to a minimum. This is also
mainly because certain variables cannot be accessed from other classes due to their
protected/private declaration in the original code — changing the type of variable to

public affects other parts of code also using the variable, so this is avoided. The

95

Chapter 5

Sugeno method of fuzzy logic inferencing is used since it is fast and avoids complex
calculations and integrations thus making it uniquely suitable to the task because the

MAC layer is busy enough with the current work it is required to do.

In the implemented fuzzy logic control, when a node Nx communicating with
neighbour N exceeds the RTS retransmit limit while trying to establish the RTS-
CTS handshake operation, it then proceeds to call the evalRetry function. The fuzzy
logic code is implemented within this function and is passed a reference of the
current -packet to be sent as its parameter. This *packet is used to obtain the
destination node's ID and its corresponding entry in the neighbour table (of the node
sending this packet) by traversing the link list to match the node ID found in the

packet header.

If no node entry is found, the attempt to retry retransmitting RTS is abandoned since
it is obvious that the node never had a route to the destination. The termination
process is similar to the original. If a matching entry is found, the entry's table values
are checked to see whether they have expired. The expiry time is set at 8 seconds
which might seem rather short but it is chosen beéause the maximum speed of node
movement used during th'e simulations is at 20m/s. If a mobile node moves away
from a static node at 20m/s, within 8 seconds it would have moved 160 metres apart
which is the maximum transmission range of the nodes. Therefore, after 8 seconds a

node would theoretically be at the boundaries of the I ission range anyway. This

assumption is valid only if the pair of nodes' starting coordinates are the same (one
node on top of the other perhaps), the nodes move in a linear fashion and only one

node moves in the pair. If both nodes are already far apart and/or both nodes move

96

Chapter 5

apart simultaneously and/or even if the nodes move at right angles to each other, then
the distance covered would certainly be greater within that 8 second period (based on
theory of relative velocity). If the entry has not yet expired, then the current distance

between the source and destination nodes is estimated using the following equation.

Estimated distance = Last recorded distance + node speed x (time

elapsed between now anc last entry time)

Letting the two latest entries in node Na's neighbour table for node Ng be d/ at 1/
and d2 at 12 for the distance and time where ¢/ < 2 < and ¢ is the current time, as a

result:

Estimated distance, dgsr= d2 + [(d2 - dl) / (t2 - t1) x (t - t2))

This estimated distance value is the first input to the fuzzy logic inferencing process.
The second input is the speed at which the nodes are moving relative to each other.
Using the difference in distance and recorded times, the velocity is determined to be
cither getting closer or moving farther apart.
With these two inputs, the fuzzy inferencing process can then begin. The inferencing
process uses 4 fuzzy relations to fuzzify the inputs. The relations can be
approximated into sentences as follows:

If nodes are near AND nodes are separating THEN retry times is medium

If nodes are near AND nodes are approaching THEN retry times is medium-high

If nodes are average AND nodes are separating THEN retry times is low

If nodes are average AND nodes are approaching THEN retry times is high
A high number of retries is set at seven times and /ow at a single retry. Medium and

medium-high is set at three and five additional retries respectively. Therefore, the
97

Chapter 5

number of additional retries is limited to seven times therefore making a total
maximum of 14 retries each time (inclusive of the initial default seven) before the

handshake attempt is actually terminated.

To represent the fuzzy sets, arrays are used where the array elements represented
points of the fuzzy relation graph. The distance array has seven elements of which
the first one identifies whether it is a trapezoid or triangular relation to allow for
casier changing of fuzzy relation types. The following four elements are the points in
the graph from left to right, while the last two tells if the4two ends allow for infinite
values beyond the graph limits. The second array for velocity only uses six elements
only because all of them use the trapezoidal shape and does not need the first
identifying element unlike the distance array. The array declarations used are shown

below alongside their graphical representations in the corresponding figures.

Float myrange(2] (7] = {
(1.0, 0.0, 5.0, 55.0, 60.0,0.0,0.0},

(1.0, 55.0, 60.0, 65.0,160.0,0.0,0.0},

AVERAGE

b " sh 100 TsoRange (m)

Figure 5.1 — Fuzzy membership graph for range

98

Chapter 5

double myaccel[2] (6] = {
{0.0,0.0,0.1,10.0,0.0,0.0},

{-10.0,-1.0,0.0,0.0,0.0,0.0}

Ty Vewooty (mvs)

Figure 5.2 - Fuzzy membership graph for velocity

Since the fuzzy relations above use the AND operator on the consequents, the min
operation is used on the results of the input fuzzification so the smaller value
between the estimated distance and velocity is chosen during the inferencing stage.
The weights used in the Sugeno defuzzification are relative to the output values
required (i.e. medium, high, low) and are multiplied with the results of the

:
inferencing stage. The final result is cast to an integer and returned.

// Inferencing
for (i=0;i<6;i++)
{
if (preout2(i] < preoutl(i]) // AND (if OR then use '>')
foutputHeight [i)=preout2(i];
else i

foutputHeight [i] =preoutl([i];

} -

99

Chapter 5

// Defuzzification
for (i=0;i<6;i++)
{
totalY+=myretry([i]*foutputHeight (i];

totalH+=foutputHeight [i];

if (totalH>0)

finalOutput=totalY/totalH; // Avoid div by zero

.
else

finalOutput=0;

return (int) (finalOutput);

Regular testing and verification of the modified code is important to make sure that
the code runs correctly and optimally and also to allow for trial runs to fine-tune the
weights involved in the defuzzification. Since running the fuzzy logic code in the
simulator would require a long period of time, initially a standalone version of the
logic code was created in C code to accept two inputs entered during run time to
emulate the simulator passing two inputs to the code. Everything in the standalone
version remains the same except values for the power of received packets was
changed to integer values to simplify entering input values. Further testing of the
code was incorporated into the process of fine-tuning the we.ghts and fuzzy relations

of the fuzzy logic code during test runs of the simulation.

100

