Q

UNIVERSITY OF MALAYA

EVALUATING INTRUSION DETECTION SYSTEMS IN A UNIX-BASED

ENVIRONMENT

MAZNI ZAMBRI

WGC97012

.

This dissertation is submitted to the Faculty of Computer Science and Information Technology, University of Malaya in fulfillment of the requirements for the degree of Masters of Software Engineering.

2003

Abstract

An intrusion detection system is an essential security component of any computing or network resource. Its function is to verify that an intrusive activity has occurred within the target system. However, as with any security technology, it has its limitations. The reality is that intruders are always a step ahead of the security measures of the target system and will likely find a loophole.

Even if a computing infrastructure is equipped with an intrusion detection system, it does not mean that the intrusion detection system will detect 100% of the malicious activities that occur. There is a need for the security personnel to be made aware of the strengths and weaknesses of their running intrusion detection systems in order to keep vigilant of potential attacks and to undertake countermeasures to known weaknesses. Evaluation of intrusion detection systems provides for this need.

The main purpose of evaluations is to determine the performance of intrusion detection systems which reveals their strengths and weaknesses. Evaluations are beneficial in terms of helping to focus effort on eliminating current weaknesses, documenting existing technologies and guiding research.

This dissertation describes the evaluation on intrusion detection systems using publicly available test data sets and open source intrusion detection systems. The performance of the selected intrusion detection systems is measured and performance ranking conferred based on their detection rates. In addition, this dissertation also highlights the weaknesses of previous evaluations to improve future evaluations.

ii

Acknowledgements

I would like to thank my research supervisor, Pn. Azwina Mohd. Yusof, for guiding my dissertation and providing me with valuable ideas. I would also like to thank my brothers and parents for their assistance and encouragement.

Contents

List of Figures			
List of Tables			
List of Abbr	eviations	ix	
1 Introdu	ction	1	
1.1 Int	rusion Detection Systems	1	
	aluations of Intrusion Detection Systems		
1.3 Th	e Objectives and Benefits of Evaluating Intrusion Detection Systems	s3	
1.4 Re	search Objectives and Contributions		
1.5 Re	search Methodology		
1.6 Re	search Scope		
1.7 Di	ssertation Organisation		
2 Backgro	ound		
2.1 Co	mputer Security		
2.1.1	What is Computer Security?		
2.1.2	Why Computer Security?	9	
2.1.3	Computer Security Today		
2.1.4	Approaches to Secure Computing		
2.1.5	Computer Security and Software Engineering		
2.2 Un	ix		
2.2.1	Definitions		
2.2.2	An Overview of the Unix Operating System		
2.3 Sec	curity in Unix		
2.3.1	Unix Security Issues		
2.3.2	Enhancing Unix Security		
2.3.3	Similarities and Differences Between Windows NT and Unix		
2.4 Intr	rusion Detection		
2.4.1	What is Intrusion Detection?		
2.4.2	Why Intrusion Detection?		
2.4.3	The Evolution of Intrusion Detection: An Overview		
2.4.4	Technology Overview of Intrusion Detection Systems	42	
2.4.5	Methods Used in Intrusion Detection Systems		
2.4.6	Organisation of Intrusion Detection Systems	50	
2.4.7	Intrusion Detection Architecture	53	
2.5 Intr	usion Detection in Unix	58	
2.5.1	Monitor Log Files	58	
2.5.2	Use Commands that Run at a Specified Times to Your Benefit	59	
2.5.3	Examine the Filesystem	60	
	nmary		
	ng Intrusion Detection Systems		
3.1 Pre	vious Evaluations of IDSs	63	
3.1.1	NSS Group 2001 [NSS 2001]		
3.1.2	The 1998 DARPA-LL Evaluations [Lippmann 2000]	64	
3.1.3	The 1999 DARPA-LL Evaluations [Lippmann 2000a]	65	

	3.2 Sel	ection of IDS tool for the evaluation	. 66
	3.2.1	Why Snort?	
	3.2.2	What is Snort?	. 67
	3.2.3	Snort Architecture	. 68
	3.3 Tes	t Objective	. 69
		t Scope	
		t Requirements	
	3.5.1	Hardware Requirements	
	3.5.2	Software Requirements	
		nmary	
4		ign	
		rview of Tests	
		t Data	
	4.2.1	Attack Descriptions for the Test Data Sets	
	4.2.2	The Test Data Sets	
		os to Testing	
	4.3.1	Construction of Suitable Test Environment	
	4.3.2	Implementation of Tests	
	4.3.3	Gathering of Results	
	4.3.4	Evaluation of Results	
		imary	
5		lementation	
9		figuring Snort	
	5.1.1	Specifying the Snort Rulesets	
		ulting Configurations	
		ing the 4 Configurations of Snort	
		mple of a Test Run	
		imple of a rest Run	
6		illar y	
0		Data Set 1 (1998 Learning Data Week 6)1	
	6.1.1	Summary of Results from Test Data Set 1	
		Data Set 2 (1998 Learning Data Week 7)	
	6.2.1	Summary of Results from Test Data Set 2	
		Data Set 3 (1999 Test Data Week 1)	00
	6.3.1	Summary of Results from Test Data Set 3	07
		Data Set 4 (1999 Test Data Week 2)	
	6.4.1	Summary of Results from Test Data Set 4	14
		rall Test Result Summary	
		imary	
7		uation	
/		Performance 1	
	7.1.1	Snort 1.7 Custom	
	7.1.1	Snort 1.7 Custom	
	7.1.2	Snort 1.7 Full	
	11110	Snort 1.8.3 Full	
	7.1.4	Snort 1.8.3 Custom	
	7.2 Perf	ormance Kanking	19

7.3 Limitations of Previous Research	120		
7.3.1 Limitations of the NSS Group 2001 Evaluation	120		
7.3.2 Limitations of the 1998 DARPA-LL Evaluation	120		
7.3.3 Limitations of the 1999 DARPA-LL Evaluation	121		
7.4 Summary	122		
8 Summary and Conclusion	123		
References	126		
Appendix A: Attacks in Test Data Set 1	133		
Appendix B: Attacks in Test Data Set 2			
Appendix C: Attacks in Test Data Set 3			
Appendix D: Attacks in Test Data Set 4 143			
Appendix E: Snort Rulesets			
Appendix F: Result Form for Test Data Set 1 158			
Appendix G: Result Form for Test Data Set 2	160		
Appendix H: Result Form for Test Data set 3	161		
Appendix I: Result Form for Test Data Set 4			
Appendix J: Sample Snort Configuration File			

List of Figures

List of Tables

Table 2.1: Similarities and Differences Between Windows NT and Unix	37
Table 2.2: Pros and Cons of Network-Based Intrusion Detection Systems	43
Table 2.3: Pros and Cons of Host-Based Intrusion Detection Systems	44
Table 4.1: Description of the Denial of Service Attacks	76
Table 4.2: Description of the User to Root Attacks	78
Table 4.3: Description of the Remote to Local Attacks	80
Table 4.4: Description of the Probe Attacks	82
Table 4.5: Description of the Data Attack(s)	84
Table 6.1: Results of Testing the Snort Configurations with Test Data Set 1	103
Table 6.2: Summary of Results from Testing Snort with Test Data Set 1	105
Table 6.3: Results of Testing the Snort Configurations with Test Data Set 2	106
Table 6.4: Summary of Results from Testing Snort with Test Data Set 2	106
Table 6.5: Results of Testing the Snort Configurations with Test Data Set 3	107
Table 6.6: Summary of Results from Testing Snort with Test Data Set 3	110
Table 6.7: Results of Testing the Snort Configurations with Test Data Set 4	111
Table 6.8: Summary of Results from Testing Snort with Test Data Set 4	114
Table 6.9: Summary of the Overall Test Results	115
-	

.

List of Abbreviations

Abbreviation	Full Phrase
ASIM	Automated Security Management System
BSM	Basic Security Module
CAPI	Common Application Programming Interface
CGI	Common Gateway Interface
CMDS	Computer Misuse Detection System
DARPA	Defense Advanced Research Projects Agency
DARPA-LL	Massachusetts Institute of Technology's Lincoln Laboratory, under
	Defense Advanced Research Projects Agency (DARPA) sponsorship
DES	Data Encryption Standard
DIDS	Distributed Intrusion Detection System
DoS	Denial of Service
GB	Gigabyte
GHz	Gigahertz
GSS-API	Generic Security Services Application Program Interface
HTML	Hypertext Markup Language
ICMP	Internet Control Message Protocol
ID	Intrusion Detection
IDS(s)	Intrusion Detection System(s)
IP	Internet Protocol
IPSEC	Internet Protocol Security
ISS	Internet Security Systems
MB	Megabyte
Mhz	Megahertz
NIDS(s)	Network-based Intrusion Detection System(s)
OS	Operating System
PID	Process Identification
PPP	Point-to-Point Protocol
PPTP	Point-to-Point Tunneling Protocol
R2L	Remote to Local
RAM	Random Access Memory
RISC	Reduced Instruction Set Computer
RPC	Remote Procedure Protocol
SAIC	Science Applications International Corporation
SANS	SysAdmin, Audit, Network, Security
SLIP	Serial Line Internet Protocol
SMB	Server Message Block Protocol
SSL	Secure Sockets Layer
TCP	Transmission Control Protocol
TCP/IP	Transmission Control Protocol / Internet Protocol
U2R	User to Root
UID	User Identification