2 Background

This background chapter is meant to provide readers with a review of the
literature deemed as essential to understanding subsequent chapters on the topic of Unix-
based intrusion detection. Firstly, it deliberates on computer security in general, then, it
proceeds to present Unix in the sccond section. The third section deals with security in
Unix while the fourth section presents the subject of intrusion detection, which is mainly
absorbed from [Amoroso 1999], in length. Finally, it addresses the topic of intrusion

detection in Unix.

2.1 Computer Security

Computer security has become a subject of increasing prominence as more business
and government applications are being automated and more critical and sensitive data is
being stored in computers — everything from your credit card data to the Department of

Defense’s national security information.

2.1.1 What is Computer Security?

The Encyclopedia of Sofiware Engineering [Kemmerer 1994] defines computer
security as the protection of resources (including data and programs) from unauthorized
disclosure, modification or destruction. Additionally, the system resources must also be
protected (i.e., access to system services should not be denied). These computer security
properties are referred to as confidentiality, integrity and availability. More accurately:

o Confidentiality ensures that sensitive information is not disclosed to unauthorized

recipients. -

o Integrity ensures that data and programs are modified or destroyed only in a specified
and authorized manner.
¢ Availability ensures that the resources of the system will be usable whenever needed
by an authorized user.
The degree to which these properties are required depends on the application. For
example, the defense industry is primarily interested in confidentiality. The banking
industry, on the other hand, is more interested in integrity while the telephone industry

may require availability the most.

2.1.2 Why Computer Security?
Most existing systems have security flaws that render them susceptible to intrusions,
penetrations, and other forms of abuse.

Dorothy Denning
Even with the best security mechanisms, we must expect that a determined adversary will
be able to penetrate our defenses.

Teresa Lunt

The threat is real. According to the Computer Security Institute and the Federal
Bureau of Investigation, 70% c;!‘ organisations surveyed reported security breaches in
2000. This figure has increased from 42% reported in 1996. Most security experts feel
that these numbers are under-inflated, as there are many motivations for organisations to

avoid reporting incidents.

Packet Forgng'
High "
Sophistication
of Hacker
Tools

Technical
Knowledge
Required

Low 4985 1990 1995 2000

Figure 2.1: Hacker Capabilities |Cisco Systems 2000]

Moreover, as the graph (see Figure 2.1) from Cisco Systems indicate, hackers are
getting smarter. In an article by Enterasys Networks [Enterasys Networks 2000), it is
stated that although numerous network scanning and attacking techniques have been
known for several decades, it is only recently that the tools required to perform
sophisticated analysis of a target network has become publicly available. For example,
the port scanners commonly available in the early 90s would simply attempt to connect to
a target machine on every port to create a list of potential active ports. Modern port
scanners include operating system identification, can target entire ranges of IP addresses
and even transmit decoy scans fo render it more difficult for the target to identify the

origin of the scanner.

2.1.3 Computer Security Today

Computer security consists mainly of defensive methods used to detect and foil
potential intruders. The principles of computer security hence emerge from the types of

threats intruders can inflict. For example, one general security stance is that "everything

10

that is not permitted is prohibited." If this principle is enforced, then an intruder can not
get access to some object just because the security administrator did not consider whether
it should be restricted or not. Many members of the security community deem that if
software were designed with more emphasis on security and if systems were configured

properly, then there would be less security problems.

2.1.4 Approaches to Secure Computing

The following subsections, adapted from [Kemmerer 1994], presents four
approaches to achieving secure computing, which may be used to implement an
organisation's security policy. They are the use of special procedures for working with
the system, the inclusion of additional functions or mechanisms in the system, the use of
assurance techniques to increase one's confidence in the security of the system, and the

use of intrusion detection systems.

(A) Procedural Approaches

Procedural approaches prescribe the appropriate behaviour for the user to follow
when using the system. The periods processing approach for processing jobs at different
security levels is an example of a procedural solution to satisfy a security requirement.

User guidelines for the appropriate choice of a password are the most prevalent
example of using procedural approaches to achieve a security requirement. For example,
to deter password guessing by a potential intruder one should choose a long password (at
least eight characters) that is not obvious and not easily guessable (e.g., not a spouse's

first name, a middle name, a login name, or any of these spelled backwards). In addition,

a password should not be written down, or if it is it should not be written in an obvious
place.

Another example of a procedural approach is a set of rules for the appropriate
handling of removable storage devices. Oftentimes data that is perfectly safe while in a
protected system is compromised by a penetrator getting access to removable storage,
such as a dump tape, and analyzing it on an unprotected system. For this reason most
security conscious organisations have explicit rules for handling removable media, such

as requiring them to be stored in an approved vault.

(B) Functions and Mechanism
Including additional functions or mechanisms in a computer system is another
way of enhancing computer security. The mechanisms presented in this section are

grouped into authentication mechanisms, access control, and inference control.

Authentication Mechanisms s

Authentication mechanisms are used to assure that a particular user is who he/she
claims to be. One of the mechanisms is the secure attention key. This key, when hit by a
user at a terminal, kills any process running at the termina) except the true system listener
and thus guarantees a trusted path to the system. This will foil attempts at “spoofing,”
which is the process of fooling a user into believing that he/she is talking to the system,
resulting in information being revealed.

Most of the password guidelines that were discussed above as a procedural
approach can be enforced by the system. For instance, the password program can require

long passwords and it can check the password chosen against an online dictionary or

against a list of obvious passwords. The login program can also inform the user that it is
time to change passwords and not allow further logins if the password is not changed in
time. Finally, the system can generate secure passwords for the users using a secure
password generator.

Other mechanisms include sophisticated authentication devices that depend on
unique physiological or behavioral characteristic that can be examined for each user. The
most common biometric devices are based on fingerprints, handprints, or retina patterns.

The most common behavioral devices use voice, signature, or keystroke characteristics.

Access Control
Assuming that by using authentication mechanisms and good password practice

the system can guarantee that uscrs are who they claim to be, the next step is to provide a

means of limiting a user's access to only those files that policy determines should be

accessed. These controls are referred to as access control. Different applications and
systems have different security requirements, and these requirements are expressed in the
access control policy for the application or system. Access control policies are enforced
by the access control mechanisms.

There are two types of access control:

o Discretionary access control - the owner of an object specifies what type of access the
other users can have to the object. Thus, access is at the discretion of the owner. An
example would be the use of passwords for file access whereby the owner selects a
password for each file and distributes the password to those users to whom the owner
wants to give access to the file. Another example that is used on Unix systems is the

owner/group/other approach. The owner of a file 'assigns the types of access that are

allowed for the owner, for all users in the group associated with the file, and for all
users on the system.

* Mandatory access control - the system determines whether a user can access a
resource based on the security attributes (e.g., labels or markings) of both the user and
the object. Mandatory access control is often called non-discretionary access control.

A convenient way of describing access rights is with an access matrix. Each entry
in the matrix is a set of access rights that indicate the access that the subject associated
with the row has for the object associated with the column. Figure 2.2 is an example

access matrix.

OBJECTS
SUBJECTS | 01 | 02 03 [04 05
Sl R W | RW w
S2 E R
S3 RW E
oS4 RE RW RE

Figure 2.2: Example Access Matrix

There are two commonly used and more efficient ways of representing an access
matrix in a computer system: access control lists and capability lists [Kemmerer 1994].
With the access control list approach each object has an access list associated with it. The

capability list approach associates a list with each subject.

Inference Controls

The last class of security mechanisms discussed in this section is inference
controls. These controls attempt to restrict database access to sensitive information about
individuals while providing access to statistics about groups of individuals. The ideal is to
have a statistical database that discloses no sensitive data.

As an example of the type of threat that is addressed by inference control
mechanisms consider a database that contains enrollment and grade statistics for a
university class. If Morgan is the only Economics major in a particular class one could
deduce Morgan's grade by retrieving the average grade for the course, the average grade
of all non-economics majors in the class, and the number of students in the class.

Two approaches to solving the inference problem are to restrict queries that reveal
certain types of statistics and to add "noise" to the results returned. An example of a
query restriction would be to restrict queries with more than some predetermined number
of records in common or with too many attributes specified. As for adding “noise” to the
statistical results returned, techniques used are systematic rounding, random rounding,

and controlled rounding [Kemmerer 1994).

(C) Assurance Techniques

The third approach to en’hancing the security of a system is to subject the system
to rigorous assurance techniques that will raise one's confidence that the system will
perform as desired. Among these techniques are penetration analysis, formal verification,
and covert channel analysis. None of these methods guarantee a secure system. They only

increase one's confidence in the security of the system.

Penetration Analysis

One approach to locating security flaws in computer systems is penetration
analysis. This approach uses a collection of known flaws, generalizes these flaws, and
tries to apply them to the system being analyzed. Usually a tcam of penetrators, called a
tiger team. is given the task of trying to enter the system. Flaws in many major systems
have been located by using this approach [Hebbard 1980, Linde 1975].

The problem with the tiger team approach is that like testing, "penctration teams
prove the presence, not absence of protection failures”" [Popek 1974]. This observation
has led to the use of formal specification and verification techniques to increase ones

confidence in the reliability and security of a computer system.

Formal Verification

Formal verification demonstrates that an implementation is consistent with its
requirements. This task is approached by decomposing it into a number of easier
problems. The critical requirements, which are usually a natural language statement of
what is desired, are first stated in precise mathematical terms. This is known as the
formal model or critical criteria for the system. For example, the formal model for a
secure system could be that information at one sccurity;level does not flow to another
security level. Next, a high level formal specification of the system is stated. This
specification gives a precise mathematical description of the behavior of the system
omitting all implementation details, such as resource limitations. This is followed by a
series of less abstract specifications each of which implements the next higher level

specification, but with more detail. Finally, the system is coded in a high order language.

This high order language implementation must be shown to be consistent with the
original requirements.

The advent of the security kernel as a means of encapsulating all security relevant
aspects of the system makes formal verification feasible. That is, by developing kernel
architectures that minimize the amount and complexity of software involved in security
decisions and enforcement, the chances of successfully verifying that the system meets its
security requirements are greatly increased. Because the remainder of the system is
written using the facilities provided by the kernel. only the kernel code must be verified.
Examples of work in this arca are [McCauley 1979, Walker 1980, Silverman 1983, and

Bevier 1989]

Covert Channel Analysis

Covert channels signal information through system facilities not intended for data
transfer, and they support this communication using methods not detected or regulated by
the access control mechanisms. Storage channels transfer information using the
manipulation of storage locations for their coding scheme. That is, the sending process
alters some system attribute (e.g., a file lock or a device busy flag) and the receiving
process monitors the alteration. For example, if two proécsscs have only write access to a
file, then the sending process could lock the file, and the receiving process could detect
this change by attempting to write to the file. In this way, the receiver could interpret the
file being locked as a one and it not being locked as a zero. Timing channels transfer
information using the passing of time for their coding scheme; the sending process

modulates the receiver's response time to detect a change in some shared entity.

Although there is concern that a user at a high security level may use a covert
channel to signal information to a user at a lower level, the major threat from a covert
channel is its potential to be employed by a Trojan horse. A Trojan horse is a program
that gives the appearance of providing normal functionality, but whose execution results
in undesired side effects.

In addressing the threat of covert channels two major challenges have been
identified. The first challenge is in developing techniques to identify covert channels in a
comprehensive, systematic manner. Several covert channel analysis techniques have been
proposed and utilized. Usually these techniques base their analysis either on code
inspection or on inspection of the high level specification. Among these techniques are
the Non-Interference approach [Goguen 1982], the Shared Resource Matrix (SRM)
methodology [Kemmerer 1983], and Information Flow analysis [Denning 1976]. The
second, and more difficult challenge, is in removing the channels, or at least lowering
their bandwidths, without rendering the system unacceptably slow or restrictive.
References [Hu 1991, Karger 1991] provide excellent examples of how this second

covert channel challenge is being met.

(D) Intrusion Detection and Prevention

Over the past decade, sig’niﬁcant progress has been made toward the improvement
of computer system security. Unfortunately, the undeniable reality remains that all
computers are vulnerable to compromise. Even the most secure systems built today are
vulnerable to authorized users who abuse their privileges. Given this reality, the need for
user accountability is very important. Accountability is the key, both as a deterrent and

for terminating abusive computer usage once it is discovered. In addition, the need to

maintain a record of the transactions that have occurred on a system is crucial for
performing damage assessment. In recognition of these needs and in recognition that
security violations are a fact of life for computers, many systems implement a form of
transaction record keeping called audit collection. The data collected is called an audit
log. Additional systems and/or software are often required to generate the necessary audit
data. For example, in order to produce audit records for Sun Microsystem's Solaris one
needs to use the Basic Security Module (BSM) [Sun 1991]. The topic of intrusion

detection is dealt with extensively in subsequent sections in this chapter.

2.1.5 Computer Security and Software Engineering

The key difference between sccure software and other high quality software is
that secure systems have to be able to withstand active attacks by potential penetrators.
When developing any reliable software one must try to minimize the faults in the system
and assure that accidental abnormal user actions or abnormal external events do not result
in undesired events. When developing a secure system the developers must also assure
that intentional abnormal actions cannot compromise the system. That is, secure systems
must be able to avoid problems caused by malicious users with unlimited resources.

Because security is a system requirement just lii(e performance, capability, and
cost, it must be designed from ti)c beginning. It must not be added on after-the-fact. In
addition, because security is only one of many goals for a system, it may be necessary to
trade off certain security requirements to achieve other goals, such as user friendliness.

When designers first start thinking about developing secure systems they often
think that it would be beneficial to keep the system design secret. However, the security

community realized many years ago that the benefits ofan open design far outweigh any

advantages of keeping the design hidden from would be intruders. The open design
principle [Saltzer 1975] states that "the mechanism should not depend on the ignorance

of potential attackers..." By having peer reviews of the design of a secure system, security

weaknesses in the system are often discovered during the design phase. It is always better
to have a colleague find a weakness during the design phase rather than having it
discovered through a compromise after the system has been ficlded.

The main difference between sccure systems and other high quality systems is

that secure systems are subject to malicious attack; therefore, it should be no surprise that

a primary difference in developing secure systems is the need for additional testing and

for a somewhat different form of testing. Penetration analysis is a form of testing.
However, unlike standard testing techniques where a tester's primary task is to
demonstrate that the program gives the correct result when presented with varying inputs,
with penetration analysis the system is given input that is not expected to give a good
result or operations arc executed in an unexpected sequence. Thus, instead of
concentrating on showing that the system gives the expected result when used properly.
the testing concentrates on demonstrating that the system gives an undesired result when
used improperly. Thus, the test cases concentrate more on trying the unusual or the
unexpected. .

Finally, because the need for a high level of assurance was recognized by the
security community many years ago, the use of formal methods is more prevalent in the
design and analysis of secure systems than in most other software development areas. All

of the national and international evaluation criteria specify the need for the use of formal

methods to achieve added assurance.

2.2 Unix
2.2.1 Definitions
Ironically, according to Seth T. Ross in his Unix Svstem Security Tools textbook

“There is no such thing as Unix". In a nutshell, Unix. since its birth more than 30 ycars

ago by AT&T, has metamorphosed millions of times. After the licensing of the AT&T

source code in the early 1990s, each manufacturer produced its own version of the
operating system resulting in thousands of Unix variants.
[Ross 2000] offers several practical definitions of Unix, they are as follows:

e Legal. While there may be no such thing as "Unix." the term is a trademark owned by
the Open Group, an international consortium that demands the mark received proper
atribution. Sometimes AT&T, Bell Labs, Novell. or X/Open Company Ltd. can be
seen listed as the trademark holders - it's been passed off time and again.

e Technical. According to the Unix FAQ. Unix is "an operating system typically
written in C, with a hierarchical file system and integration of file and device 1/0,
whose system call interface includes services such as fork() and pipe(). and whose
user interface includes tools such as cc , troff , grep . awk , and a choice of shell." It
also provides a consistent approach to multitasking,” with built-in operations for the
creation, synchronization, afid termination of processes. It is intrinsically portable
between different kinds of computers.

e Linguistic. The name "Unix" was intended as a pun on the name Multics and was
written "Unics" at first, for UNiplexed Information and Computing System. Both
"Unix" and "UNIX" are in wide use today - "UNIX" isn't an acronym. This

dissertation uses “Unix”.

® Social. Many people who run Unix-like systems such as Linux think they're running
Unix. Official Unix systems and unofficial Unix systems arc commonly treated as
belonging to a single category - in books, in media coverage, on the net. and by
general social consensus.
The following overview of the Unix operating system is adapted from [Bell Iabs

2002].

2.2.2 An Overview of the Unix Operating System

The Unix operating system was designed to let a number of programmers access
the computer at the same time and share its resources

The operating system coordinates the use of the computer's resources, allowing
one person, for example, to run a spell check program while another creates a document.
lets another cdit a document while another creates graphics, and lets another user format
adocument -- all at the same time, with cach user oblivious to the activities of the others

The operating system controls all of the commands from all of the keyboards and
all of the data being gencrated, and permits each user to believe he or she is the only
person working on the computer.

This real-time sharing of resources makes Un;x one of the most powerful

operating systems ever.
(A) The Uniqueness of Unix

Multitasking

Unix lets a computer do several things at once, such as printing out one file while
the user edits another file. This is a major feature for users, since users don't have to wait

for one application to end before starting another one.

Multiusers

The same design that permits multitasking permits multiple users to use the
computer. The computer can take the commands of a number of users -- determined by
the design of the computer -- to run programs. access files, and print documents at the

same time.

System l’urm;:ili(r
A major contribution of the Unix system was its portability. permitting it to move
from one brand of computer to another with a minimum of code changes. At a time when
different computer lines of the same vendor didn't talk to each other -- yet alone machines
of multiple vendors -- that meant a great savings in both hardware and software upgrades.
It also meant that the operating system could be upgraded without having all the

customer's data inputted again. And new versions of Unix were backward compatible

with older versions, making it easier for companies to upgrade in an orderly manner.

Unix Tools
Unix comes with hundreds of programs that can be divided into two classes:
o Integral utilities that are absolutely necessary for the operation of the computer,
such as the command interpreter, and
* Tools that aren't necessary for the operation of Unix but provide the user with

additional capabilitics, such as typesetting capabilitics and ¢-mail.

[]
[

Unix Communications

Unix e-mail, at first, permitted users on the same computer to communicate with
cach other via their terminals. Then users on different machines, even made by different
vendors, were connected to support e-mail. And finally. Unix systems around the world
were linked into a world wide web decades before the development of today's World

Wide Web.

Applications Libraries

Unix as it is known today didn't just develop overnight. Nor were just a few
people responsible for its growth. As soon as it moved from Bell Labs into the
universities, every computer programmer worth his or her own salt started developing
programs for Unix.

Today there arc hundreds of Unix applications that can be purchased from third-

party vendors, in addition to the applications that come with Unix.

(B) How Unix is Organized
The Unix system is functionally organized at three levels:
o The kernel, which schedules tasks and manages storage;
e The shell, which connects and interprets users' commands, calls programs from
memory, and exccutes them; and
* The tools and applications that offer additional functionality to the operating system
The Kernel

The heart of the operating system, the kernel controls the hardware and turns part

of the system on and off at the programmer's command. If the computer is asked to list

(Is) all the files in a directory, the kernel tells the computer to read all the files in that

directory from the disk and display them on the screen.

The Shell

I'here are several types of shell, most notably the command driven Bourne Shell
and the C Shell, and menu-driven shells that make it casier for beginners to use.
Whatever shell is used. its purpose remains the same - to act as an interpreter between

the us

rand the computer.
I'he shell also provides the functionality of "pipes,” whereby a number of
commands can be linked together by a user, permitting the output of one program to

become the input to another program.

Tools and Applications

I'here are hundreds of tools available to Unix users, however, some have been
written by third party vendors for specific applications. Typically, tools are grouped into
categories for certain functions, such as word processing, business applications, or

programming.

2.3 Security in Unix

Dennis Ritchie, one of the creators of Unix, wrote on the security of the system:

“It was not designed from the start to be secure. It was designed with the necessary

characteristics to make security serviceable.” Unix was never well-known for its security.
However, as with any other operating system, Unix security can be enhanced by applying

to the security approaches, functions and mechanisms, assurance techniques and intrusion

detection and prevention, discussed in the section 2.1.4.

25

Nevertheless, Unix offers basic sccurity and protection in the following ways

[Adfa 1995]:

¢ Protection between processes. Unless shared memory or tracing a child program is
used, a user can't look at the memory of another process. Users can only send signals
and get the status of their own child processes.

e Protection between users. Users need a password to log in and use a Unix system.

¢ Protection at the file level. Remember that in Unix, nearly everything is a file. Unix
allows three levels of protection: the user-level, the group-level, and everybody else.

file is rcadable, a file is writable and a

For cach level. there are three file privilege

file is exccutable.

Most of the Unix sceurity features are done at the file and/or user level. Users -

can't access most people's directories because they have been denied permission, and
many of the programs on the system are similarly protected against users.

Very few of the Unix security features are provided at the system call level. That
is to say, very few of the system calls have anything to do with security, but all of the
system calls have their arguments and results checked by the operating system to ensure
that users are not trying to do anything they are not allowed to.

Remember that the basic access to an operating system’s services is through the
system calls. If these system calls do not check if the user or process making the call has
the authority, there is no security. Fortunately, nearly all Unix systems calls are now very
secure; there were a few system call holes in earlier systems, but these have been fixed.
But as new system calls are introduced, new security holes appear. Security holes in

general have occurred in poorly written Unix system and application programs.

2.3.1 Unix Security Issues

(A) Identification and Authentication

When a user logs into his her account the system carries out any commands that it
finds in special "login" files. These commands define the user's working environment:
which editor to use, which printer to send work to and where to deliver printed output to.
Making changes to these login files changes the user's working environment.

Once a user is logged into his/her account the user is always placed in his/her
home directory. This is the user's very own location in the file system: it never varies.
Any Unix system can have many users on it at any one time. User's home directories are
usually grouped together under a system directory such as /home. A large Unix system
may have several hundred users. with their home directories grouped in subdirectories
according to some schema such as their organisational department.

There may be several Unix systems at a site connected together by a network. If
the user has accounts on these remote systems the user can login to them from the system
he/she is currently using. Distributed applications are left on their own for client/server
authentication. Many applications are distributed by using programs such as telnet and
ftp, which rely on passwords sent in the clear. Two ways ;fdoing this are listed below:

Logging in with rlogin (rc’molc login)

Logging in with telnet

(B) Access Control

Unix provides access control based on object permissions. The object permissions

are discretionary access controls. Most objects are accessible through the file system in

Unix, and the access control mechanisms are implemented as a part of the file system.

Some interprocess cc ication are not rep d in the file system and
have their own access control mechanisms.

Unix provides access control using permission bits. The permission bits provide a
fixed granularity of user (really owner). group. and other. This is the same as having an
access control list that can only have three rules in it: one for the owner, one for a single
group, and one for everyone else. Groups are provided for ease of administration. Groups
are defined by the system administrator and are the only mechanism for specifying
permissions for more than a single user.

Unix doesn't have a generic mechanism to give users selected system privileges.
The root user, or superuscr, has all system privileges. Administrators using the setuid and
group features can build privilege mechanisms. Serwid is a powerful Unix feature that
allows one user to assume the identity of another while executing a file (often this user id
is zero or root--the administrative superuser). These applications are privileged no matter
who invokes them. and as such must be as verified as secure as any part of the system
trusted path. Much security breaches in Unix implementations are due to errors in coding
these programs. The end effect could be that if a privileged application executes a
malicious program, an entire systgm and network could be compromised.

There are three types of permissions:

rread the file or directory

w write to the file or directory

x execute the file or search the directory

Each of these permissions can be set for any one of three types of users:

u the user who owns the file

£ members of the group to which the owner belongs

o all other users
T'he access permissions for all three types of user can be given as a string of nine
characters:

user group others

FWX FWX FWY

(C) Accountability

Unix tightly binds a User ID (UID) that uniquely identifics a user on that host to
cach process or entity that performs an action on the system. The Ul name space can be
expanded to a collection of hosts (domain) with the Network Information Service (NIS).
The UID is part of the user block (ublock) of information associated with every process

connected with a user's login. This information is available to audit mechanisms.

(D) Audit

There is no generic auditing capability in Unix. Authentication related events are
logged, but in event specific files such as sulog or privilege escalation, and utmp, wimp,
and loginlog for login information.

The syslog logging facility in Unix systems is focused on error logging and isn't

designed for security purposes.

(E) Integrity
Unix uses its file permissions to prevent access to the operating system itself. This

is the only Unix interface or facility for integrity services, except for explicit use of files

29

system structure checks (fsck) and dump/restore. The sum command can be used for

some purposes, but it is not a cryptographically strong checksum.

(F) Reliability of Service

When a user enters a command it invokes a program. While this program is
running it is called a process. It is important to grasp that although there is only one copy
of"a program held in the file system. any number of processes can be invoked which run

this program. When the operating system is started after a boot, a single process is

started. This process is the parent of all subsequent processes. Each process created on
the system has a unique number, known as its PID. associated with it.

When a user logs into the system a process is started to run the user's shell

program. Any processes that are started from within the shell - such as entering a
command - are the children of this process. A process can have many children, but only

one parent.

(G) Data Exchange

If data is important, it may need to be encrypted, especially if it is to be sent over
a network. The DES encryption algorithm is common in;the US, although it is illegal to
export it. It is also suspected that the American Sccurity Agencies are able to crack it.
There are a number of “public key" encryption algorithms which are very secure. The
PGP (Pretty Good Privacy) algorithm has a version that is legal to use in Australia. It

allows encryption and digital signatures.

30

2.3.2 Enhancing Unix Security

Third party tools and techniques arc available to help the system administrator
and system programmer to secure Unix. This section, compiled from [Smith 1993]
includes a selection of them with a discussion on what they do. Whilst these tools do not
prevent software vulnerabilities, they may help detect any intrusions that may occur
through the exploitation of those vulnerabilities, or prevent the use of network sniffers to

capture important authentication data.
(A) Cryptographic Tools

Kerberos

I'he following analysis is drawn from [Stevens 1990], [Bellovin 1991 and [Kohl

1990].

I'he Kerberos authentication system was produced at MIT as a part of Project
Athena. It is a system that uses protocols which allow authentication to take place, even
under the assumption that the network is under the complete control of an enemy.
Kerberos uses a private key cryptosystem to protect the information from disclosure and
modification. The user interface is the same as that for normal passwords.

The major strength of Kerberos is that the password is never transmitted on the
network in plain text. This reduces the likelihood of the password being captured and
replayed. The tickets and authenticators include a timestamp which aids in preventing
replay attacks (where an intruder replays a valid authentication sequence).

This style of authentication was designed with the distributed or networking

environment in mind. It is well suited to the client-server model often used in networking

31

PERPUSTAKAAN UNIVERSITI MALAYA

applications. Since both the ticket and authenticator contain the network address of the
client, another workstation cannot use stolen copies without changing their network
address.

Kerberos contains a number of minor deficiencies which should be well
understood in order to use it effectively. Installing Kerberos will increase the level of

sceurity over normal passwords, provided its limitations are understood and accepted.

DES
One of the most widely used encryption systems today is the Data Encryption
Standard (DES) developed in the 1970s by IBM [FIP 1977], [Caelli 1991]. DES is a bit
permutation, substitution, and recombination function performed on blocks of 64 bits of
data and 56 bits of key (8 characters of 7 bits). The algorithm is structured in such a way
that changing any bit in the input has a major effect on almost all of the output bits.
The DES algorithm can be used in four modes:
® Electronic Code Book (ECB);
¢ Cipher Block Chaining (CBC);
* Output Feedback (OFB);
e Cipher Feedback (CFB).
Eiach mode has particular advunl’agcs in some circumstances, such as transmitting data
over a noisy channel, or when it is necessary to decrypt only a portion of a file.
DES uses the same key to encrypt the data and decrypt the data. Therefore, it is
essential to use techniques that keep the secrecy of this key intact. Practical experience of

using DES in a global situation highlights the difficulty of using DES in groups where

keys must be distributed regularly to differing time zones. Poor key management leads to

the reduced effectiveness of DES.

MD2, MD4, MD5

The MD2 Message Digest Algorithm [Rivest 1992] was designed to exploit to 32-
bit RISC architectures to maximise its throughput, and does not require large substitution
tables. The MDS Message Digest Algorithm [Rivest 1992a] is a proposed data
authentication standard. MDS5 attempts to address potential sccurity risks found in the
speedier but less secure MD4.

The message digest algorithms generate a 128-bit signature (fingerprint or
message digest) from a given block of text. The signature is designed to prevent someone
from determining a valid block of text from a given signature or to modify a block of text

while keeping the same signature.
(B) Security Assessment Tools

Tripwire
Tripwire is a file integrity checker using a number of cryptographic
checksumming algorithms in parallel for added security [kim 1992].

Tripwire makes use of several message digesting algorithms. These are:

e MDS

e MD4

e« MD2

e Snefru

« CRC3 ’

33

¢ CRC-16

The use of more than one of these algorithms in parallel greatly decreases the
chances of an intruder being able to modify a monitored file without detection. Initially. a
reference database is built. immediately afier the installation of the operating system and
any products, and prior to reconnecting to the network. This way, one can be sure that the
files have not been modified by an intruder. The output of Tripwire (as well as Tripwire
itself) should be kept on a hardware write protected disk to prevent modification (a read-
only mounted partition is not sufficient as this may be remounted read-write by the
intruder). Tripwire should then be run at regular intervals to verify the integrity of key
system files. Another alternative to using hardware protected media is to print out a copy
of Tripwire's results. An intruder must gain physical access to the premises to adjust the
original data from Tripwirc. This helps if there is any suspicion on the integrity of the
Tripwire database.

It is meaningless to use Tripwire to protect a file such as the system password file
as users have the ability to change their password at any time, and thus the file
checksums will also change.

(C) Security Enhancement Tools

TCP Wrapper

TCP Wrapper (also known as LOG TCP) is a package that is used to monitor
incoming IP connections, log them, and provide a number of add-on services including a
limited form of access control and some sanity checks [Venema 1992].

TCP Wrapper is an extremely simple, and yet effective tool. It is very useful in

preventing connections from outside an organisation from approaching the systems. It is

possible to allow certain connections (for example, mail) to the systems, while restricting
others. Even if an intruder learns an account and password for the system, they must first
penetrate a "trusted” system before they can gain aceess to the system [Curry 1990]. It is
therefore imperative that users do not use the same password on all systems.

The TCP Wrapper. when properly configured, will reduce a system's exposure to
intruders, and hence reduce their ability to compromise the security of a system by

exploiting software vulnerabilities.

Token Generators

Token Generators are hardware packages that implement password "tokens" or
one-time use passwords [Brand 19901, [CER 1992], [Ellison 1992]. Token generators are
implemented using a variety of schemes.

One system operates by challenging the user with a seven digit number (in phone
number format). A PIN number and the challenge number are entered into the hand held
device, and it gives a seven-digit response code to reply with.

Other systems usc a changing, non-reusable password system. Each time a user
authenticates, a new password is supplied by the hand held device. There is no challenge-
response system, and the user must keep in synchronisation with password usage to
prevent a Denial of Service. Some systems can support single use password generation
for up to cight separate host systems. Some of these systems require the user to enter a
PIN before the next password is issued.

Another system displays the password continuously, changing it every minute or
s0. The host must not only keep the user's key (for generating the same sequence), but

also a synchronised clock.

35

The one-time password system is extremely effective in preventing replay attacks,
provided the enemy does not know the sequence of generated passwords (cither by

guessing, or possession of a similar device and key).

One of the major disadvantages is that to authenticate, a user must carry the
hardware with them at all times. If they do not possess their hand held device. then

authentication cannot take place.

S/Key

S/Key is a software system designed to implement a secure one-time password
scheme [Karn 1993]. It uses 64 bits of information transformed by the MD4 message
digest algorithm [Rivest 1992]. The 64 bits are supplied by the user in the form of six
English words that are generated by a secure computer. Ultimately, this computer could
be a pocket sized smart card, a standalone PC or Macintosh. or a sccured machine at

work.

2.3.3 Similarities and Differences Between Windows NT and Unix

Unix and Windows NT security features arc compared to cach other in this
section. Table 2.1 provides a synopsis of each operating system's compliance in cach of

the seven key operating system security areas.

36

Table 2.1: Similarities and Differences Between Windows NT and Unix

[Key 08
Sccurity Areas

Windows NT

Unix

Identification/ | e required before system aceess | o required before system access
Authentication | o trusted path e no trusted path
® uscrname/password as default | e username/password as default
® can encrypt password file | & can hide password file
e *GINA available to add e *ad hoc addition of third party
mechanisms mechanisms
o distributed application e *Kerberos add-on
authentication |
Access Control | o Discretionary access controls | ¢ Discretionary access controls
e implemented in Security e Implemented in file system
® Reference Monitor and other kernel locations
e Access Control Lists ‘ User/Group/Other mode bits
e 27 assignable user rights le superuser and setuid
[mechanisms
Accountability | e Security ID l'e UserID
* Maintained across client-server | Maintained across client-server
in certain applications
Auditing o LEvent Logging e Multiple event specific logs
o Single log file e Limited set of events
o Comprehensive setof | e Add-on packages for
events comprehensive security
auditing
Integrity * ACLs protect operating system | Mode bits protect OS
* Authenticode for verifying ¢ no mechanism to verify
code * code
e CAPI for applications o GSS-API for applications
¢ Integral file system utilities for | e *add-on file system utilities for
availability availability
Confidentiality | e CAPI for applications * *GSS-API add-ons for
e Secure RPC applications
e PPTPand SSL e sccure RPC
e *IPSEC add-on e SSL toolkits
e *IPSEC add-on

Low security byEc?aul! - Low security b;?ei’dull o

Manageability . .
o Single tool set, consistent GUI | « Multiple vendor specific tool
with other management tools sets, not consistent with other
e Low skill level required management tools
e High skill level required
Secur ® Sccurity domains separated e Sccurity domains separated
Partitioning e Separate user and kernel e Separate user and kernel
address space address space
¢ Individual process address e Individual process address
space space
o Single module implementation | e Distributed implementation
e Objects cleared prior to re-use | ® Objects cleared prior to re-use

T

s denotes that the basic opc;aling system does not come with this feature out of the

box. They are add-on software utilities or applications provided by third-party vendors.

2.4 Intrusion Detection

2.4.1 What is Intrusion Detection?

activity targeted at computing and networking resources. ** [Amoroso 1999]

Intrusion detection is foremost a ’process’ involving technology, people, tools,
time and interaction between entities. It is not a plug-an:d-play black box solution. The
identification (‘identifying’) ofan'vimrusion can be done before, during, or after the target
malicious activity proceeds. If the identification of an intrusion is done after-the-fact,
then the question of damages incurred and how such intrusions occurred must be
addressed. Response (‘responding’) follows after identification of the intrusion.
Meanwhile, ‘malicious activity’ refers to security-relevant actions that are harmful.

*Computing and networking resources’ is the context of security referred to in this thesis

38

because the primary interest here is the security of computers in contrast to household

(c.g. use of surveillance cameras, and the like, to detect intruders) security.

2.4.2 Why Intrusion Detection?

Standard security measures like firewalls and virtual private networks (VPNs) are
insufficient. Hacker attacks in the form of email based Trojan horses, stealth scanning
techniques and actual attacks can bypass firewalls. There are also hacking techniques that
exploit applications that are allowed to pass through the firewalls in order to enter the
target system. Intrusion detection proposes a solution to the weaknesses exposed in the
standard security measure by warding off attempted unauthorized access and deny access

1o would-be intruders.

2.4.3 The Evolution of Intrusion Detection: An Overview

Based on [Innella 2001] and [Bruncau 2001], intrusion detection has evolved
from labour-intensive manual scrutiny of audit logs to fully automated intrusion
prevention systems. Although the concept of intrusion detection has been around for
decades now, it only gained popularity very recently.

In the late 70s, administrators used to print audit Idgs, that were used as a forensic
tool, that were stacked four to five feet high by the end of the week. This method of
investigation was time-consuming and only detects the cause of security incidents after
the fact. Soon after, the notion of intrusion detection surfaced with the publishing of
James Anderson’s paper, Computer Security Threat Monitoring and Surveillance in 1980.
After that, several key events in IDS technology have advanced intrusion detection to its

present state.

39

Before long Stanford Research Institute (SRI) developed a means of tracking and
analyzing audit data on the ARPANET in 1984. Shortly after, this institute completed a
Navy SPAWAR contract with the first functional intrusion detection system, IDES. Then

Dr. Denning from SRI published the pivotal work, An Intrusion Detection Model that

revealed the essential information for commercial 1DS development. This paper is the
basis for most of the work in IDS that followed. Then in 1988, the Haystack project at
Lawrence Livermore Labs at UC Davis released another version of IDS for the US Air
Force (USAF) that analyzed audit data by comparing it with defined patterns.

Subscquently. an iteration of the IDS for the USAF, called Distributed Intrusion
Detection System (DIDS) was built. DIDS augmented the existing system by tracking
client machines as well as the servers it originally monitored. In 1989, the Haystacks
Labs released Stalker. a host-based. pattern-matching system that included robust scarch
facilities to query audit records. The Haystack progressions, coupled with SRI's
developments, significantly advanced host-based 1D technologies.

Network intrusion detection system first came into recognition with UC Davis’s
Todd Heberlain's development of Network Security Monitor (NSM). Heberlain’s NSM
was dcp]bycd at major government implementations apd also extended to the DIDS
project, where along with the Haystack team introduced concept of hybrid intrusion
detection. This fusion revolutionized the IDS subject and boosted it into the commercial
scene.

The 1990s saw the advent of commercially driven IDS developments. Haystack
Labs with its Stalker line of host-based products, Science Applications International

Corporation (SAIC) with a form of host-based intrusion detection, called Computer

40

Misuse Detection System (CMDS). and the Air Force's Cryptologic Support Center
developed the Automated Security Mcasurement System (ASIM) to monitor network
traffic on the US Air Foree's network. ASIM was the first solution to incorporate both a
hardware and software solution to network intrusion detection. ASIM project formed a
commercial company in 1994, the Wheel Group. Their product. NetRanger, was the first
commercially viable network intrusion detection device.

The intrusion detection market began to gain in popularity and truly generate
revenues around 1997. In that year. the security market leader. Internet Security Systems
(ISS), developed a network intrusion detection system called RealSecure. In 1998, Cisco
Systems bought over the Wheel Group, attaining a security solution for their customers.
Similarly, the first visible host-based intrusion detection company, Centrax Corporation,
emerged as a result of a merger of the development staff from Haystack Labs and the
departure of the CMDS team from SAIC. At present, market statistics indicate that IDS is
amongst the top selling security vendor technologies and should proceed to increase.
Moreover, US government initiatives, such as the Federal Intrusion Detection Network
(FIDNet), are also adding thrust to the advancement ol'lDS;

Thus far, there's applic;alion intrusion detection, integration of artificial
intelligence, heuristics and rules-based intrusion detection, and the like. Regardless of

how intrusion detection technology evolves, it is now an indispensable component of

information and computing security. Figure 2.3 depicts the evolution of intrusion

letection systems over the past few decades.

41

1980 187 1891 1968

Anderson's paper D enning’ N
- 9's paper AirForods ASIM Centrax Corporation
Com puter Seaurily Threat An Intrusion Detection Mode!
Monitering and Surveiane
1084 1989 e
Denning desigre IDES model Haystack Labs Cisco buys Wheel Group
9

)1 I) D)) 1)))]

1981 1082 1083(1994 1095 1096 1987 1038|1980 1900(1991 1902 1903 1004|1005 1998 1997 [1088 1996 [2000

1980 201
198 1988 1904 1980
First | a SRI 2 P ot [m
irst IDS project 1924 Haystad Project 1880 Wheel Group 1997 D S Boor
IDES Developed Heberleirls Network Security Montor 155 RealS ecure

Figure 2.3: The Evolution of Intrusion Detection Systems

2.4.4 Technology Overview of Intrusion Detection Systems

Intrusion detection systems can typically be divided into two main types,

ed IDSs look for attacks in the network traffic

network-based or host-based. Network-
while host-based IDSs look for attacks in log files. Although recent advances in
technology has given birth to commercially-driven hybrid IDSs that incorporate both
network-based and host-based IDS technologics, they remain the more expensive

solutions.

(A) Network-Based Intrusion Detection
Network-based IDSs draw on unprocessed network packets as the data source. A

network-based IDS usually utilizes a network adapter running in promiscuous mode to

monitor and analyze all traffic in real-time as it traverses the network. Its attack

recognition module uses four common techniques to recognize an attack signature:

o Pattern. expression or bytecode matching

* Frequency or threshold crossing

o Correlation of lesser events
o Statistical anomaly detection
Upon detecting an attack, the 1DS’s response module can notify. alert, react, or record the

break-in session in response to the attack.

Pros and Cons of Network-Based Intrusion Detection Systems

Table 2.2 describes the pros and cons of network-based intrusion detection

systems.
Table 2.2: Pros and Cons of Network-Based Intrusion Detection Systems
~ Pros of Network-Based IDS Cons of Network-Based IDS
e Lower cost of ownership N e Overloading can occur dué?{?ﬁéh-
* Detects attacks that host-based volume network traffic
systems miss * Limited visibility on components
e More difficult for an attacker to other than the network
remove evidence o False alarm reporting
® Real-time detection and response ® Excessive management for IT staff
e Detects unsuccessful attacks and e “Blind” IDS sensors may allow
malicious intent encrypted hazardous code to pass
e Operating system independence through

(B) Host-Based Intrusion Detection

Host-based intrusion detection emerged in the early 80s before networks were as
prevalent as they are today. Host-based IDS typically monitor system, event, and security
logs on Windows NT and syslog in Unix environments. When any of these files change,
the IDS compare the new log entry with attack signatures to see if there is a match. If so,

the system responds with administrator alerts and other zalls to action.

Host-based IDS have augmented to incorporate other technologics such as

inspection of key system files and executables using checksums at regular intervals for

unanticipated alterations. The timeliness of the response corresponds to the frequency of

the polling interval. Lastly. some products monitor port activity and alert administrators

upon access of particular ports. This type of detection introduces a basic level of

network-based intrusion detection.

Pros and Cons of Host-Based Intrusion Detection Systems

T'able 2.3 describes the pros and cons of host-based intrusion detection systems.

Table 2.3: Pros and Cons of Host-Based Intrusion Detection Systems

Pros of Host-Based IDS

~ Cons of Host-Based IDS

I
e Verifies success or failure of an No real-time intrusion detection
attack Defenseless against unknown attack
|« Monitors specific system activities signature models
| ® Detects attacks that networked- Reactive IDS, when working with
| based system miss firewalls, are exposed to insiders
l'e Well-suited for encrypted and High-incidence reporting or false
switched environments alarms
® Near-real-time detection and Once the system reacts to an attack,
response the damage is done
¢ Requires no additional hardware Negative audit trails record only
e Lower cost of entry unsuccessful attempts to access data

|
1
i

|
|
|

|

(C) Hybrid Intrusion Detection Systems

Hybrid intrusion detection systems offer management of and alert notification from both
network and host-based intrusion detection devices. Hybrid solutions provide the logical
complement to network-based ID and host-based ID - central intrusion detection

management.

44

2.4.5 Methods Used in Intrusion Detection Systems

Mecthods vary among intrusion detection: however, given an IDS, a collection of
common methods can be identified. The five techniques presented here are from

[Amoroso 1999]; they are as follows:

(A) Audit Trail Processing
Audit trail processing is the most common ID technique. Figure 2.4 presents a

high-level depiction of audit trail processing.

AN
Target] Intrusion
System -~ Detection
System
AuditLog |« Audit
Audit Probe Processing

Figure 2.4: High Level Depiction of Audit Trail Processing

The idea in an audit trail processing is that an existing log is available for parsing
and interpretation by an IDS. This method is typically performed off-line and rarely
involves any real-time analysis. Such processing introduces issues of audit trail formats,
storage techniques, archival policies, and real time auditing standards. It also raises issues
in an intrusion-processing center of the manual processes required by human beings

involved in the audit trail processing, particularly for archived data. Unfortunately, the

45

security community has been negligent in the area of developing standard formats and

techniques for audit trails.

(B) On-the-Fly Processing

This method, sometimes called network intrusion detection, involves the
monitoring of traffic so that real-time or near real-time analysis can be done with respect
to appropriate detection algorithms. Specified strings of characters are often used in this
method as a means for parsing traffic for so-called “dirty words™. These dirty words
might include */etc/password/, ‘/etc/shadow’, or other sequences one might consider
suspicious to be passing through an IDS. Figure 2.5 presents a high-level depiction of on-

the-fly processing.

Direct
system feeds

Target
System

Probe Ports

selected by -
system

administrators

Figure 2.5: High Level Depiction of On-the-Fly Processing

(C) Profiles of Normal Behaviour
Profiles of normal behaviour are used in intrusion detection to capture

cexpectations about user and system computing and networking activity. This follows the

40

basic paradigm of comparing expectations about behaviour with actual observations. The

creation of such profiles involves at least the following three basic concerns-—it involves

much more, but these are the important ones.

e Estimation of Initial Profiles. Initial profiling for new users and systems requires
estimation of expected behaviour. Such estimation is nontrivial and makes profiling
vulnerable to malicious teaching approaches by intruders (i.c., by altering initial
behaviour to set-up an intrusion profile to support a subsequent attack). One way to
deal with such initial profiling problems is to maintain a stealth intrusion detection
system so that new users are not aware that their behaviour is being profiled. This
raises all sorts of legal, cthical and organisational policy issues that may make such a
method unacceptable. This initial state problem may become less serious as more
empirical evidence emerges for a given monitored environment.

* Fine-Tuning of Profiles. Observed user and system behaviour provides a basis for
fine-tuning existing profiles. Proper fine-tuning is also nontrivial, as it requires
attention to statistical concerns about probability of occurrences and regularity of
events. In the best casc, fine-tuning would be automated, but manual techniques must
be developed for this before such automation can be considered trusted. This fine-
tuning is also vulnerable to malicious teaching approaches by profiled users or
systems.

» Profiling Using All-Source Information. Information should be used from any
relevant source to more accurately predict expected behaviour. These sources do not
have to be based on computing or networking information. In fact, some of the most

powerful profiling information is derived from sources that are out of band with

47

respect to any computer or network (e.g., personal characteristics and habits). Figure

2.6 depicts these IDS profiling concerns.

L

Update User
‘ Activit

B

Figure 2.6: Profiling Normal Behaviour

(D) Signatures of Abnormal Behavior
The use of abnormal behaviour signatures, also called attack signatures in some
ecurity books and research articles, is particularly common in on-the-fly IDS. These

bnormal behaviour signatures generally come in one or two different flavours:

Known Attack Descriptions. Dynamic descriptions of related activity patterns that

might constitute a security problem. These de: criptions of known attacks are often

referred to as attack signatures. Databases of these descriptions are reminiscent of
virus databases in virus detection software.

Suspicious String Patterns. Designated character strings (like */etc/shadow’, ‘top
seeret’, or “proprietary’) that correspond to traffic c'omcm that must be considered

suspicious. Security administrators often determine these locally.

48

Figure 2.7 depicts the use of abnormal behaviour signatures for intrusion detection.

.,--{' =

J‘ Target strings Intrusion
- Systen
(Detection

~ Probe

(\ Point @ z Systems

/ Profiles
/ |

Selected via
traffic content
modeling of

attack Selected via Should correlate
activity sequence string and
nodeling of profile based
attack processing

Figure 2.7: Abnormal Behaviour Signature Method

(E) Parameter Pattern Matching

s method involves the use of day-to-day operational experience as the basis for
detecting anomalies. From a logical perspective, this method can be viewed as a special
case of the normal profiling method. It is separated out here because the explicit
development of user and system security profiles may not be included in the approach.
Instead, operators doing normal system and network management activity might, or
might not, detect some sort of change in the parameters they typically monitor — hence
our use of pattern matching term for this method. Actually, one of the more attractive
characteristics of this method is that the administrators are not specifically targeting
sceurity issues. This introduces a more robust environment in which anomalies and

patterns might be detected and matched.

49

Such pattern matching constitutes an especially powerful processing approach
because it provides an intrusion detection capability for attacks that might not be
predictable. In fact. human operators in a network operations center might detect subtle
changes as part of their normal security and network management operations that they
can neither explain nor understand. It is these types of unpredictable changes, however.
that could lead to detection of a problem. Figure 2.8 depicts a high-level view of the

pattern matching method.

TN Intrusion
K\T{a:wt Detection
System

(network,

Interpretations

Normal

0[:7rut.xons

These monitoring
operations may
not be disciplined
[or predictable

Normal system
Operation and
Administration

///
perational Vie Q—W—J
‘—. (Patterns)

of Patterns
(intrusion
detection)

Thas
interpretation
1s triggered by
and

detection of
change

from normal

Figure 2.8: Pattern Matching Method of Intrusion Detection

2.4.6 Organisation of Intrusion Detection Systems

According to [Amoroso 1999] the primary components of a typical IDS can be

organized into a schema not unlike the one depicted in Figure 2.9.

to target system to other IDS

f

Sensor

System
Audit / Management

Archive

Processing
Engine
(Algorithms)

Knowledge Bases Alarms

Graphical User Interface(GUI) / Display

!

to operators

Figure 2.9: Intrusion Detection System Components

Here, a brief outline of each intrusion detection component is described.

e Sensor. This component provides the necessary information about the system targeted
for ID. Sensing components are also sometimes referred to as Event-Boxes or [-
Boxes. It is not uncommon for sensors to be physically remote from the rest of the
intrusion detection system.

o System Management. Every IDS needs some system management function to
maintain control over the jnternal components and to provide a means for
communications with other IDSs. This management can be centralized or distributed
in the system architecture. Network management systems based on the Simple
Network Management Protocol (SNMP) and the Remote Monitoring (RMON)
Management Information Base (MIB) are becoming more and more common as the

basic system management functionality for IDSs.

51

Processing kngine (algorithms). Processing is obviously required for 1D and the

ass

ciated processing algorithms arc generally nontrivial. Clearly, at the highest level,
we can characterize 1D processing as consisting of a collection of different goals
including reduction of irrelevant data, identification of key intrusion evidence,
decision-making about evidence with respect to defined thresholds, mining of
intrusion data warehouses for specific patterns or trends, and decision-making about
the types of response activities to initiate. Practical concerns such as amounts of
available processing power and memory inevitably arise in this area.

Knowledge bases. Knowledge bases in IDSs come in a collection of different
flavours. They provide a means for profiling of users and systems, for capturing
attack signatures to be used in detection, and for keeping any information that may be
considered useful in the processing, correlation, and analysis of potential intrusion
activity. An important research issue in knowledge bases involves the development of
common specification means for encoding profile and attack information.
Audit/archive. Proper storage of target system activity in audit logs and archives
requires considerable thought about the length of time to keep information, the
manner in which the informatign should be protected, and the formats in which the
information should be encoded or encrypted for storage and retrieval. Existing tools
that generate audit trails are not presently well suited for integration with ID tools.
This is an area in which vendors must do a better job in the future.

Alarms. In current state-of-the-practice IDSs, alarms are somewhat monolithic in the
sensc that they typically just alert a human being via a message, email, or page. As

IDS technology matures, alarms must evolve into more dynamic directives from

v
)

¢ Check for unauthorized services. Inspect /etc/inetd.conf for unauthorized additions or
changes. This file contains the list of servers that inetd invokes when it receives an
Internet request over a socket (i.e. telnet, fip, etc). In particular, search for and check

all entries that exccute a shell program (for example, /bin/sh or bin/tcsh).

2.6 Summary

This background chapter provided a literature review on Unix-based intrusion

detection. It began with a discussion of computer seeurity in general and proceeded to

claborate on the Unix operating system. It then discussed the application of sccurity in
Unix and made a comparison between Unix and Windows NT in seven key operating

system security areas. This was followed by an elaboration on the topic of intrusion

detection. Finally, the subject of intrusion detection in Unix was addressed.

resources is often much greater than the external threat, the use of 11 on internal
choke points should increase dramatically.

The major functional components included in an IDS architecture can be derived

directly from the Figure 2.10. The components are as follows:

Target system. The system on which activity and behaviour is being examined from
an 1D perspective is considered the target system. Clearly, the target system must
have assets worth protecting before any IDS can even be considered. Corporate
Intranets are good examples of typical target systems for intrusion detection. As the
United States National Information Infrastructure (NII) becomes more dependent on
computing and networking, it too becomes a good c-undidulu for ID.

Feed. "The abstract notion of “feed” is meant to represent some means for deriving
information from a target system for IDS processing and analysis. Obviously. in a
network setting, this feed might constitute a live, dedicated network connection in the
traditional sense; but it could mean a flow of information through any number of
interim storage points and processing components. A key issue with respect to feeds
is whether to carry monitored traffic from a sensor to, a central correlation site for
processing or to perform processing locally and carry alarms back to the central
correlation site for processing. ID experts should be able to rattle off the pros and

cons of distributed versus centralized feed processing feed processing (see below).

Processing. We refer to processing as the execution of algorithms designed to detect
malicious activity to some target system. These algorithms will typically make use of

basic principles and heuristics to direct the types of processing performed.

55

Furthermore, the underlying physical architecture associated with processing must
have sufficient power and storage to implement the selected algorithms.

Knowledge base. In an 1DS, knowledge bases are used to store information about
attacks as signatures and strings. user and system behaviour as profiles. and other
related information. These knowledge bases must be designed with appropriate

protection, capacity, and processing queries to support the desired 1D functions. They

also must be associated with an update function so that information about new atta
can be installed into existing knowledge bases

Storage. The types of information that must be stored in an IDS will vary from short-
term cached information about an on-going session to longer term event-related
session information that must be sent to an audit trail or archive. Storage capacity
requirements will obviously be environment specific. A key issue here is that as
network capacities grow from slow Ethernet to much greater rates, short term cached
information will requirc memory. Hardware packet capture routines will also greatly
increase the need for interim storage as target system capacities increase.
Alarms/directives. The most familiar response in an IDS is to send an alarm to an
interested party, processing component, or other IDS. This may or may not be enough
in a given target environment. For example, the inclusion of alarms that automatically
reconfigure parts of the ID based on detected activity are becoming more feasible. As
this trend continues, we believe that IDSs will require messaging architectures for
transmitting information between components.

GUl/operator interface. Display (graphical or otherwise) by an IDS for an operator or

administrator requires attention to proper presentation, combination, and

representation of information. Most commercial 1DSs are migrating to a point and
click interface for administration and interpretation, which may be viewed as bad
news by hard core Unix administrators. In reality. operational environments only
achieve a proper user interface after considerable live experience and feedback to and
from interface developers and the operational users. Few D rescarchers and system
vendors understand this subtle point. Instead. they continue to point to a glitzy user
interface as a salient feature of their system.

Communications infrastructure. Different components of an IDS and different IDSs
require a means for communication. This may involve infrastructure protections such
as an encryption and access control to protect information such as alarms in transit
between components to ensure that information or requests from one part of the 11D
infrastructure get delivered reliably to the appropriate destination. For the average
Intranet with multiple 1D probe points, the communication infrastructure is the actual
Intranet, perhaps with virtual private network (VPN) transport. Alternatives include
dial access transport for low volumes or frame relay private virtual circuits (PVCs)

for greater volumes.

Multiple IDSs. As was suggested, some enviro may involve the use of more
than one intrusion detection system. When this is true, the overall infrastructure must
support the types of care and maintenance required to deal with multiple systems.
Efforts such as the Common Intrusion Detection Framework (CIDF) are being
organized to case the use of multiple systems from different vendors. The US

National Information Infrastructure (NII) is a classic example of a collection of

resources requiring multiple 1DSs.

57

e Network management. Network management systems are commonly found in any
nontrivial environment performing 1D. The network management system may be
embedded into the intrusion processing or it could be used to complement 1D via
remote monitoring and administration activity. Most IDS rescarchers forget this

interaction between 1D and network management.

2.5 Intrusion Detection in Unix

There are several ways to detect an intrusion in Unix. These techniques do not
guarantee the detection of an intruder. However, this is a proactive way to monitor your
system(s) to detect common hacker practices. The following technique is provided by

[MIS 2002].

2.5.1 Monitor Log Files

Periodically examine log files for connections from unusual locations or for other
unusual activity. It is best to automate this as much as possible so that it does not become
an overwhelming task or is forgotten. Some tools that can be deployed for this purpose:

e Log Scanner :

e Logcheck

* Swatch

¢ Log Surfer
[f more than one system is monitored, send all syslogs to a secured-as-possible loghost
(meaning preferably no user accounts and only essential services running). Some of the

echniques used for monitoring log files are:

e Check the system logs in /Avar/log and /var/adm. This log files will show what
processes have been running and any errors which may occur with them. Examine
these logs to determine if there have been any problems with running services or any

connections from unusual pla

e Check web server logs for abnormal activity. Review web server log files (if there is a
web server running) to determine if there have been any errors or compromises. There
are commonly known exploits in certain publicly available cgi-scripts and in cgi-
seripts packaged with certain web servers. Review CERT at www.cert.org for these
exploits and watch the web server logs for attempted accesses of these cgi-scripts.
(Examples include: /cgi-bin‘handler, /cgi-bin phf. and /cgi-bin/test-cgi)

e Check for suspicious logins. A record of user logins is available through the use of
the last command. Periodically check the results of this command for suspicious
connections from unknown or untrusted sites. Syslogs can also be monitored for
logins and logouts from unknown or untrusted sites using some of the automated log
checking scripts mentioned carlier.

o Check xferlog for suspicious file transfers. If there is a functioning ftp daemon on the
system, then a log of all sugcessful file transfers to the system is contained in
/var/log/xferlog. Periodically examine this file and search for suspicious activity.

(Sometimes filenames of specific exploits or hacker tools can be noticed.)

2.5.2 Use Commands that Run at a Specified Times to Your Benefit

Unix has a utility called ‘cron’ that runs commands at specified times. Use this to

monitor network interfaces and search for signs of an intruder. Examples of this are:

59

* Monitor for network interfaces in promiscuous mode. A network interface in
promiscuous mode is usually an indicator of a network monitoring program,
commonly called a sniffer. Intruders use sniffers to capture username/password
information and are commonly included in hacker toolkits. Under some Unixes
(SunOS), ifstatus can be used to monitor for this. [fstatus is a utility which only
produces output if a network interface is in promiscuous mode. This makes it the
perfect tool to run frequently as a cronjob. If ifstarus will not work with certain
versions of Unix. look for other tools which can detect a network interface in
promiscuous mode or programs that have the network interface open.

e Look for core files. Some exploits try to overtlow or crash programs in order o give

root access. When programs crash an image of the running binary is saved as a core

file to be used for debugging purposes. The file system can be examined for these

. When a core file is found, it can be evaluated with the

core files on a regular basi
file or strings commands to determine what program produced the core file. In some
instances core files of hacker tools or exploit binaries may be found.

e Search for users that have unauthorized root shells. Use the ProcTreeNode custom
utility to periodically search the process listing for users which have unauthorized

root shells.

2.5.3 Examine the Filesystem
Periodically examine the file system for hidden directories, modified or added

files, etc. For example:

60

Search for SETUID ROOT scripts. Intruders often leave setuid scripts to easily give
them root access at a later time. Monitor the file system for unusual binaries or scripts
with the setuid or setgid bits set.

Scarch for group and world writable home directories. .forwards and .rhosts files.
Allowing accounts to have group and world writable home directories, .forward and
thosts files opens the system to potential security problems. Periodically search for
these types of problems and evaluate if they are necessary. Perl scripts can be written
to search for cach of these things. In addition to printing the file permissions it prints
the contents of the .forward and .rhost files.

Lxamine the system for hidden directories. A common technique for hackers on Unix

systems is to hide their tools in hidden directories such as "and ".mail". Use
the find program to look for these types of hidden files and/or dircctories. Use the
fileaudit utility to look for admin defined goofy directories.

Examine critical files. Periodically browse through critical system files that start/stop
services or manage user information/accounts.

Check for changes in /etc/hosts.equiv and user .rhosts files. These files identify
trusted accounts and machines, which enable users to login without using a password.
In particular Look for "+' entries and inappropriate non-local host names contained in
these files. In addition, verify that these files are not world or group writable. The
previously mentioned Perl script can be used to monitor the contents of .rhosts files.
Check for changes to the password file. Periodically examine the password file for
accounts with no passwords, accounts with changed shells or uid, and added

accounts. It is also appropriate to check for and delete expired accounts.

61

¢ Check for unauthorized services. Inspect /etc/inetd.conf for unauthorized additions or
changes. This file contains the list of servers that inetd invokes when it receives an
Internet request over a socket (i.e. telnet, fip, etc). In particular, search for and check

all entries that exccute a shell program (for example, /bin/sh or bin/tcsh).

2.6 Summary

This background chapter provided a literature review on Unix-based intrusion

detection. It began with a discussion of computer seeurity in general and proceeded to

claborate on the Unix operating system. It then discussed the application of sccurity in
Unix and made a comparison between Unix and Windows NT in seven key operating

system security areas. This was followed by an elaboration on the topic of intrusion

detection. Finally, the subject of intrusion detection in Unix was addressed.

