I'he background traffic was generated using a Adtech AX/4000 broadband test
ystem and a Smartbits SMB6000. The advantage of these traffic generators is that they
e capable of generating sufficient traffic to saturate the network.

As for the results, almost all the network-based products tested showed good
esilience to the IDS evasion technique. Despite the use of much horrified fragroute.
vhich is an advanced hacking tool, the IDS products tested showed strong resistance.
\lthough some IDSs still exhibit some weaknesses to certain individual evasion
echniques, there was no evidence of any product completely succumbing to such
dvanced hacking tools. The full results of this evaluation can be scen in the “verdict’
ections in [NSS 2001] for every IDS evaluated.

However, on the downside, the direction taken by some of the IDS vendors scem
vorrying. They eliminate alerts for events which they deem unimportant. An example
vould be the IDS that does not raise a SYN flood alert unless it sees half-open

onnections, no matter how heavy the flood.

.1.2 The 1998 DARPA-LL Evaluations [Lippmann 2000]

An intrusion detection evaluation test bed was developed which generated normal
raffic similar to that on a government site containing 100’s of users on 1000’s of hosts.
fore than 300 instances of 38 diﬂ';:rcnt automated attacks were launched against victim
Jnix hosts in seven weeks of training data and two weeks of test data. Six rescarch
roups participated in a blind evaluation and their results were analyzed.

The purpose behind producing the seven weeks of training data was to give IDS
valuators a chance to modify the rules base and anomaly detection systems by

amiliarizing them with the types of traffic running lhrou.gh the network. There were also

64

attacks included in each of the learning data files. to show typical attacks. It gave the
systems using data mining and learning algorithms a chance to have sample data, which
helped them “learn” how the network operated [Lippmann 2000].

Since it was difficult to take real Air Foree network data and manage to remove
sensitive information from it for evaluation purposes. the lab used custom software to
generate traffic. It allowed Lincoln Labs to simulate the activities of hundreds of
programmers, managers and sccretaries, as well as a few hosts appear to be thousands of
terminals. A packetsniffer was located on the internal network to capture the generated
traffic. All simulated attacks were launched from “outside™ the base, so a traffic sniffer
was located outside the gateway would be able to catch it all [Lippmann 2000].

The intrusion detection systems were supposed to detect the following categories:
Denial of Service (DoS), Probe, User to Root (U2R) and Remote to Local (R2L). In the
DoS categories, which should be fairly easy to detect, the best system could only pick up
65% of attacks. The Probe category had two of the systems detecting 90% of probing
activities. In the U2R category, the best systems could only find 60% to 70% of attacks.
In the R2L, which allows remote users to gain local access (in some cases root access),
the best system could only find 35% of attacks. The systems that could interpret BSM

audit data on Sun workstations could improve performance slightly [Lippmann 2000].

3.1.3 The 1999 DARPA-LL Evaluations [Lippmann 2000a]

The 1999 evaluation set out to improve upon the evaluation performed a year
carlicr, with extensions added on and more attack types. This included the addition of

Windows NT exploits. The test bed to generate this particular data was similar to the

65

1998 tool. It also included Windows NT hosts. Also, the same attack sub-categories were
ised and are listed above | Lippmann 2000].

The full results of this evaluation can be seen in the summary of the results that
.incoln Labs published on pages 14 - 18 of its summary [Lippmann 2000a]. The scoring
nethod Lincoln Labs showed in their charts was the percentage of attacks found with
selow 10 false alarms of that attack instance per day, and also had a detection rate above
10%.

Another major change in 1999 was a focus on determining the ability of systems
o detect new attacks without first training on instances of these attacks. The 1998

valuation demonstrated that systems could not detect new attacks well. The new 1999

aluation was designed to evaluate enhanced systems which can detect new attacks and

o analyze why systems miss new attacks. Many new attacks were thus developed and

nly examples of a few of these were provided in training data.

3.2 Selection of IDS tool for the evaluation

Among the objectives of this research is to perform testing and evaluation on
ntrusion detection systems. As this research is much constrained by time, resource and
nanpower, its scale is comparatively less complex than lhc; evaluations discussed above.
n this smaller scale, testing mu]liplc types of intrusion detection tools would be
mpractical and superficial. A more viable way to perform a simple yet thorough

valuation is by testing four different configurations of one type of tool. To this end, an

DS tool called Snort was selected.

66

3.2.1 Why Snort?

The main reason for exclusively testing on snort, from which its different

configurations are derived. is because it comes with a utility called SnortSnarf that parses
the alerts from the alerts file. Due to the very large tepdump test data file (described in
sections 4.2), the number of lines generated in the alerts file can vary from zcro to
hundreds of thousands. Reading the alerts file line by line is too labour intensive and time
consuming. SnortSnarf provides a simple to read report format of all the attacks detected
by Snort. Other publicly available IDS tools do not have this utility thus rendering the
testing for such a tool impractical for a one-person rescarch.

Moreover, Snort was selected because it is casily obtainable and customized. The
SANS Institute also reported Snort as becoming the standard among intrusion detection
experts duc to the fact that it is open-source, frequently updated, and free of charge.
Martin Roesch, in his paper entitled “Snort — Lightweight Intrusion Detection or
Networks,” says “Snort fills an important ‘ccological niche’ in the realm of network
security: a cross platform, lightweight network intrusion detection tool that can be
deployed to monitor small TCP/IP network traffic as well as outright attacks™.

3.2.2 What is Snort?

Snort is a lightweight network intrusion detection system, capable of performing
real-time traffic analysis and packet logging on IP networks. It can perform protocol
analysis, content searching/matching and can be used to detect a variety of attacks and
probes, such as buffer overflows, stealth port scans, CGI attacks, SMB probes, and much
more. Snort uses a flexible rules language to describe traffic that it should collect or pass,

as well as a detection engine that utilizes a modular plug-in architecture. Snort has a real-

67

ime alerting capability as well, incorporating alerting mechanisms for syslog, a user
pecified file, a Unix socket, or WinPopup messages to Windows clients using Samba's

mbclient.

.2.3 Snort Architecture
The Snort architecture consists of three principal components. A simplified

epresentation of these components is shown in Figure 3.1. They are described below:
Packet Decoder: the Snort packet decoder supports the Ethernet. SLIP and PPP
mediums. The packet decoder performs all the work to prepare the data in an
expedient manner for the detection engine.
Detection Engine: the detection engine is at the heart of Snort. It essentially is
responsible for analyzing every packet based on the Snort rules that are loaded at
runtime. The detection engine separates the Snort rules into what is referred to as a
chain header and chain options. The common attributes such as source/destination [P
address and ports identify the chain header. The chain options are defined by details
such as the TCP flags, [CMP code types, specific type of content, payload size, etc.
The detection engine recursively analyzes each and every packet based on the rules
defined in the Snort rules file. The first rule that matchc; the decoded packet triggers
the action specified in the rule déﬁnilion, A packet that does not match any Snort rule
set is simply discarded. Key components of the detection engine are the plugin
modules such as the portscan module. Plugin modules enhance the functionality of
Snort by adding to the analysis capability.
Logger/Alerter: logging and alerting are two separate subcomponents. Logging

allows the logging of information collected by the packet decoder in human readable

68

or tepdump format. Alerts can be configured to be sent to syslog. flat file, Unix
sockets or a database. Optionally, the alerting may be turned off completely during
testing or penetration studies. By default, all logs are written in the /var/log/Snort

folder. and all of the alerts are written to the /var/log/Snortalerts file.

b m
packet goa 73
ey
—> et

w Alert

l [

oder Detection Logger &
Engine Alerter

Figure 3.1: Snort Architecture

3.3 Test Objective

3

This research has three objectives. Firstly, is to perform a thorough evaluation

process on intrusion detection system without the use of complex computing resources.

ccondly, to evaluate the performance of the four configurations of the selected intrusion
detection system, Snort. Finally, to uncover the limitations of the three past evaluations,
mentioned in sections 1.2 and 3.1, after experience of IDS testing and evaluating is

sarnered.

69

3.4 Test Scope

The test was set up in accordance to the requirements detailed in section 3.5. This
esting was implemented on Linux because the tepdump test data sets can only be
rocessed in a Unix-based environment.

The four configurations of Snort used in the testing were:

Configuration 1 - Snort 1.7 Full

Configuration 2 - Snort 1.7 Custom

Configuration 3 - Snort 1.8.3 Full

Configuration 4 - Snort 1.8.3 Custom
he different configurations were determined by the different ruleset used for the
articular configuration. The four different ruleset configurations used are provided in
\ppendix E.

The four test data sets used (taken from: http://www.IL.mit.edw/IST/ideval/) for the

>sting was run through each of the above configurations. The test data sets are presented
clow:

Test Data Set 1 - 1998 Learning Data Week 6

Test Data Set 2 — 1998 Learning Data Week 7

Test Data Set 3 — 1999 Test Data Week 1

Test Data Sct 4 — 1999 Test Data Week 2
hese data sets were among the test data sets used in the DARPA-LL evaluation. The test
ata sets contain attacks and background traffic. The attacks can be divided into five
tegories, they are:

Denial of Service (DoS)

70

e Probe
e User to Root (U2R)
e Remote to Local (R2L.)
* Data

I'he testing measures the performance of the four different configurations in terms
of how well they deteet the attacks in the test data. Then the result of the tests are put in
report format by SnortSnarf (described in section 4.3.1 under subsection (I9)) after which
they are manually filtered and transferred to their Result Forms in Appendices F, G, H or
Lin the following order:
¢ Results from Test Data Set 1 — Result Form in Appendix F
* Results from Test Data Set 2 — Result Form in Appendix G
e Results from Test Data Set 3 -~ Result Form in Appendix H
* Results from Test Data Set 4 — Result Form in Appendix |

In total, there were 16 test runs - 4 test data sets were run through 4 configurations
of Snort. As part of evaluating the IDSs, a performance ranking is conferred to cach of

the 4 configurations based on their overall performance as reflected in their test results.

3.5 Test Requirements

3.5.1 Hardware Requirements

The test machine must have at least the following minimum specifications:
» Intel Pentium 111 500Mhz
» 96 MB of RAM

» 4 GB Hard Disk or greater

71

o All hardware must also be on the redhat hardware compatibility list.

http://hardware.redhat.com/hel/

3.5.2 Software Requirements
The following are the software required to support the running of the intrusion
detection system:
Platform used for testing:
» Operating system - Linux 7.1 or later
Software Used for Snort:
 shadow-utils-20000902-12.i386.rpm - Utilities for managing accounts and shadow
password files.

http://rpmfind.net//linux/RPM/redhat/8.0/i386/shadow-utils-20000902-12.i386.html

chkeonfig-1.3.6-3.i386.rpm - A system tool for maintaining the /ete/rc*.d hierarchy.

http:/rpmfind.net/linux/RPM/redhat/8.0/i386/chkconfig-1.3.6-3.i386.html

' bash-2.05b-5.i386 - The GNU Bourne Again shell (bash) version 2.05b.

http://rpmfind.net//linux/RPM/redhat/8.0/i386/bash-2.05b-5.i386.html

glibe-2.2.93-5.i386.rpm — The GNU libe libraries

3

http:/rpmfind.net//linux/RPM/redhat/8.0/i386/glibc-2.2.93-5.i386.html

glibc-debug-2.2.93-5.i386.rpm — Shared standard C librarics with debugging
information

http://rpmfind.net//linux/RPM/redhat/8.0/i386/glibc-debug-2.2.93-5.i386.html

krb-libs-1.2.5-6.i386.rpm — The Shared libraries used by Kerberos 5

http://rpmfind.net//linux/RPM/redhat/8.0/i386/krb5-libs-1.2.5-6.i386.htm!

* openssl-0.9.6b-29.i386.rpm — The OpenSSL toolkit

http://rpmfind.net//linux/RPM/redhat/8.0/i386/0openssl-0.9.6b-29.i686.html

e libpeap-0.6.2-16.i386.rpm — A system independent interface for user-level packet
capture

htp://rpmfind.net//linux/RPM/redhat/8.0/i386/libpeap-0.6.2-16.1386.html

o postgresql-libs-7.2.2-1.i386.rpm — The shared libraries required for any PostgreSQIL.
clients

http:/rpmfind.nev//linux/RPM/redhat/8.0/i386/postgresql-libs-7.2.2-1.i386.html

e libstdc++-3.2-7.i386.rpm — GNU standard C-++ library

http://rpmfind.net//linux/RPM/redhat/8.0/i386/libstde++-3.2-7.i386.html

3.6 Summary

This chapter discussed three previous evaluations: one from NSS Group, Europe's

foremost independent network testing facility and consultancy organisation. and two
from the MIT(Massachusetts Institute of Technology) Lincoln Laboratory, under Defense
Advanced Research Projects Agency (DARPA) sponsorship. It then introduced the
chosen IDS tool, Snort. The justification for the choice made is discussed in section 3.2.1
and an elaboration on the chosen-IDS is presented in section 3.2.2. Following this, the

test objectives, test scope and test requirements of this research are also discussed.

73

