ACH - 9660 INVC 1ms 18/4/00

Fuzzy Logic Control in ATM network

A thesis submitted to the Faculty of Computer Science and Information Technology,

University of Malaya

in partial fulfillment of the requirement for the degree of

Master in Computer Science

By LAU WENG TAT AUGUST 1999

Dimikrofiskan pada 37 .07 .2000

No. Mikrofis 14/98

Jumlah Mikrofis 2

HAMSIAH BT MANMAD ZAHABI

This thesis constitutes 6 credit hours out of a total of 30 credit hours required for the fulfillment of the degree of Master in Computer Science.

ABSTRACT

Future high speed network must be able to support a various mix of heterogeneous network traffic, while at the same time satisfy the high bandwidth requirements of applications. Asynchronous Transfer Mode (ATM) is viewed as the most promising technology that can satisfy the above requirements. ATM is potentially able to support all classes of traffic including voice, video and data in a single transmission and switching technology. The ATM network promises greater efficiency in handling different kind of traffic types without compromising the desired quality of service requested. Traffic flows which have completely different characteristics are statistically multiplexed to share transmission and switching resources, and to maximize utilization of resources.

However, due to the unpredictable statistical behavior of the traffic and various traffic characteristics, it has become a great challenge for ATM networks to effectively control the traffic and congestion while at the same time provide the desired quality of service.

The ATM traffic management framework has defined a set of traffic and congestion control functions to overcome the above problem. These functions have been extensively studied in the literature. On the other hand, the success of fuzzy logic control in controlling ill-defined and non-linear systems is seen as a possible solution to the problem. The ability to incorporate expert's knowledge and use of linguistic rules provides fuzzy systems with incredible flexibility and adaptability. Fuzzy logic control provides an alternative to the conventional method of implementing ATM traffic and congestion control functions.

The proposed fuzzy logic based traffic controller utilizes a set of linguistics rules (based on expert's knowledge) manipulated by means of fuzzy set theory and fuzzy logic in making control decisions. It consists of a Fuzzy Policer and a Fuzzy Congestion Controller. The Fuzzy Policer's main task is to monitor and restrict the behavior of traffic source to its

negotiated parameters. This is accomplished by discarding cells that violates the negotiated values. The Fuzzy Congestion Controller aims to prevent or relieve network congestion. It will notify the sources to adjust their transmission rates depending on the congestion state of the network, thus minimizing the occurrence of congestion. Simulation is carried out to evaluate the performance of the proposed fuzzy traffic controllers. Favorable results have been produced that shows the feasibility and effectiveness of utilizing fuzzy logic control in ATM networks.

TABLE OF CONTENTS

Acknowledgements	i
Abstract	ii
Table of Contents	iv
List of Figures	vi
List of Tables	viii
Abbreviations	ix
Chapter 1 Introduction	1
1.1 ATM Congestion Control	1
1.2 Issues in ATM Congestion Control	2
1.3 Previous works on Fuzzy Logic Control in ATM Network	4
1.4 Motivation	18
1.5 Scope of the Thesis	19
1.6 Organization of the Thesis	20
Chapter 2 Fuzzy Set Theory and Fuzzy Logic Control	21
2.1 Fuzzy Logic	21
2.2 Fuzzy Set Theory	23
2.3 Fuzzy Set Operations	25
2.4 Fuzzy Logic Controller	27
2.5 Advantages of Fuzzy Logic Controller	35
2.6 Applications of Fuzzy Logic Controller	36

Chapter 3 ATM Network and Congestion Control	37
3.1 ATM Network	37
3.2 ATM Traffic and Congestion Control	44
3.3 ATM Traffic and Quality of Service (QoS) Attributes	47
3.4 ATM Service Categories	49
3.5 ATM Traffic Management Framework	52
3.6 ATM Traffic Control and Congestion Control Functions	53
Chapter 4 Proposed Fuzzy Logic Traffic Controller for ATM Network	62
4.1 Introduction	62
4.2 Proposed Fuzzy Logic based Traffic Controller	63
4.3 Operation of the Fuzzy Logic Traffic Controller	79
Chapter 5 Simulation Results and Performance Analysis	81
5.1 Introduction	81
5.2 Simulation Model	81
5.3 Simulation Results for the FP	86
5.4 Simulation Results for the FCC	91
Chapter 6 Conclusion	96
References	98

LIST OF FIGURES

1.1 Model of fuzzy policer	11
1.2 Fuzzy based CAC mechanism	13
2.1 Membership function for fuzzy number 2	24
2.2 Different shaped of Membership functions	29
2.3 Architecture of a fuzzy logic controller	30
3.1 (a) ATM Cell Format – user-network interface	39
3.1 (b) ATM Cell Format - network-network interface	39
3.2 ATM Connection Relationships	41
3.3 ATM Protocol Architecture	43
3.4 (a) Virtual Scheduling Algorithm	56
3.4 (b) Continuous-state Leaky Bucket Algorithm	57
3.5 The leaky bucket algorithm	58
4.1 Model of Fuzzy Logic Traffic controller	63
4.2 Triangular and Trapezoidal membership functions	70
4.3 (a) The membership functions for the term set $T(A_1)$	71
4.3 (b) The membership functions for the term set $T(A_2)$	71
4.4 The membership functions for the term set T(y)	72
4.5 The membership functions for the term set T(c)	73
4.6 The membership functions for the term set T(q)	76
4.7 The membership functions for the term set $T(\Delta q)$	77
4.8 The membership functions for the term set $T(y)$	78
5.1 Simulation Network Topology	82
5.2 On-off Source Model	83
5.3 Characteristics On-off Source Model	84
5.4 Violation of Mean Bit Rate for Packetized Voice	88
5.5 Violation of Mean Bit Rate for Still Images	88

3.0 Violation of Wear Burst Size for Lacketized Voice	-
5.7 Violation of Mean Burst Size for Still Images	89
5.8 Variation of Mean Interarrival Time	92
5.9 Variation of Mean Burst Size	93
5.10 Variation of Number of Connections	93
5.11 Variation of Mean Silence Duration	94

80

LIST OF TABLES

3.1 ATM Service Categories Attributes	51
3.2 Traffic control and congestion control functions	52
4.1 Rule Structure for Fuzzy Policer (FP)	74
4.2 Rule Structure for Fuzzy Congestion Controller (FCC)	79
5.1 Traffic Characteristics of Packetized Voice and still images	87

ABBREVIATIONS

ATM Asynchronous Transfer Mode
CAC Connection Admission Control
UPC Usage Parameter Control

FLC Fuzzy Logic Controller

COA Center of Area

MOM Mean of Maximum

TCP/IP Transmission Control Protocol/Internet Protocol

QoS Quality of Service

VPI Virtual Path Identifier

VCI Virtual Channel Identifier

CRC Cyclic Redundancy Check

UNI User-network Interface

NNI Network-network Interface

GFC Generic Flow Control

PT Payload Type
CLP Cell Loss Priority
HEC Header Error Control

VP Virtual Path
VC Virtual Channel

VCC Virtual Channel Connection
VPC Virtual Path Connection

SVC Switched Virtual Channel Connection
PVC Permanent Virtual Channel Connection

AAL ATM Adaptation Layer

PCR Peak Cell Rate
SCR Sustainable Cell Rate
MBS Maximum Burst Size
MCR Minimum Cell Rate

CDVT Cell Delay Variation Tolerance

CDV Cell Delay Variation

CTD Cell Transfer Delay
CLR Cell Loss Ratio

CBR Constant Bit Rate

rt-VBR Real-Time Variable Bit Rate

nrt-VBR Non-Real-Time Variable Bit Rate

UBR Unspecified Bit Rate

ABR Available Bit Rate

EFCI Explicit Forward Congestion Indication

GCRA Generic Cell Rate Algorithm
TAT Theoretical Arrival Time

LCT Last Compliance Time
RM Resource Management

FP Fuzzy Policer

FCC Fuzzy Congestion Controller