TABLE OF CONTENTS

Ack	nowledge	ment	1
Abstract		ii	
Tabl	le of Cont	ents	iii
List	of Tables		vi
List	of Figure	s	viii
List	of Abbrev	viations	x
CH	APTER 1	: INTRODUCTION	
1.1	Tyre Te	Tyre Technology	
	1.1.1	Functions of a Pneumatic Tyre	1
	1.1.2	Tyre Classifications	2
	1.1.3	Tyre Construction Types	2
	1.1.4	Tyre Components	3
1.2	Tyre Co	ompounding	5
1.3	Filler R	einforcement in Tyre Compounds	8
1.4	Precipit	ated Silica as a Filler in Tyre Compounds	9
1.5	Surface	Chemistry of Precipitated Silica	13
1.6	Surface	Modification of Silica	15
1.7	Effect o	of Surface Modification by Chemical Reactions	16
	1.7.1	Mechanism of TESPT - Modified Silica	17
1.8	Effect o	of Surface Modification by Physical Adsorption	20
1.9	Objecti	ve	26
CH	APTER 2	2: EXPERIMENTAL	
2.1	Materia	ıls	27
2.2	Compo	und Formulations	28
2.3	Prepara	tion of Compounds	32
	2.3.1	Weighing of Ingredients	32

	3.3.2	Mixing of Masterbatch and Final Mix	35
2.4	Preparat	tion of Moulded Test Piece	36
2.5	Determi	ination of Vulcanization Properties	37
2.6	Determi	ination of Rheological Properties	38
	2.6.1	Mooney Viscosity	38
	2.6.2	Mooney Scorch	39
	2.6.3	Cure Rate	39
2.7	Determi	ination of State of Cure	39
	2.7.1	Crosslink Density	39
	2.7.2	Differences in Maximum and Minimum Torque, Δ (Torque)	41
2.8	Determi	ination of Physical Properties	41
	2.8.1	Tensile Stress-strain Properties	42
	2.8.2	Hardness	43
	2.8.3	Resilience	44
	2.8.4	Tear Strength	44
	2.8.5	Heat Build-up	45
	2.8.6	Dynamic Mechanical Properties	47
	2.8.7	Cut Growth Resistance	49
	2.8.8	Abrasion Resistance	50
2.9	Determi	ination of Regression Analyses	51
CHA	APTER 3	: RESULTS AND DISCUSSION	
3.1	General		53
3.2	Vulcani	zation Properties	53
3.3	Rheological Properties		56
	3.3.1	Scorch Time	56
	3.3.2	Cure Rate	58
	3.3.3	Mooney Viscosity	60
3.4	State of	Cure	62
	3.4.1	Crosslink Density	62

	3.4.2	Differences in Maximum and Minimum Torque, $\Delta(Torque)$	64
3.5	Tensile	Stress-strain Properties	66
3.6	Hardnes	ss	71
3.7	Resilien	nce	71
3.8	Tear Str	rength	74
3.9	Heat Bu	aild-up	76
3.10	Dynami	c Mechanical Properties	78
3.11	Cut Growth Resistance		82
3.12	Abrasio	n Resistance	83
СНА	PTER 4	: CONCLUSION	
4.1	Finding	s	85
4.2	Suggest	tions for Further Work	87
Appe	ndix 1		88
Appe	Appendix 2		89
Appe	Appendix 3		90
Appe	ndix 4		91
Appe	endix 5		93
Appe	ndix 6		95
Appe	endix 7		97
Appe	endix 8		98

REFERENCES

100

LIST OF TABLES

TABLE	TITLE	PAGE
Table 1	Compound requirements for different components in a tyre	6
Table 2	Suggestions for Optimizing Specific Properties	13
Table 3	List of materials and its supplier	27
Table 4	Compound formulations to study the effects of PEG in a	29
	silane-modified-silica compound with 1 pphr Si-69	
Table 5	Compound formulations to study the effects of PEG in an	30
	unmodified silica compound (without Si-69)	
Table 6	All black control compound formulation	31
Table 7	An example (Compound B/2) of calculation of ingredient	33
	weight for the internal mixer	
Table 8	Mixing sequence of the masterbatch	35
Table 9	Mixing sequence of the final mix	36
Table 10	Comparison of cure time at different levels of PEG	54
Table 11	Comparison of scorch time at different levels of PEG	56
Table 12	Comparison of cure rate at different levels of PEG	58
Table 13	Comparison of Mooney Viscosity at different levels of	60
	PEG	
Table 14	Comparison of crosslink density at different levels of PEG	62
Table 15	Comparison of Δ (torque) at different levels of PEG	64
Table 16	Comparison of stress-strain at different levels of PEG	66
Table 17	Comparison of aged stress-strain at different levels of PEG	70
Table 18	Comparison of hardness at different levels of PEG	71
Table 19	Comparison of resilience at different levels of PEG	71
Table 20	Comparison of tear strength at different levels of PEG	74
Table 21	Comparison of heat build-up at different levels of PEG	76
Table 22	Comparison of tan δ at different levels of PEG	78
Table 23	Comparison of storage modulus, E'at different levels of	80
	PEG	

TABLE	TITLE	PAGE
Table 24	Comparison of De Mattia cut growth resistance at different	82
	levels of PEG	
Table 25	Comparison of abrasion resistance at different levels of	83
	PEG	
Table 26	Summary of effect of PEG incorporation on compound	86
	properties	
Table 27	Summary of properties with r ² greater than 0.80	87

LIST OF FIGURES

<u>FIGURE</u>	<u>TITLE</u>	<u>PAGE</u>
Figure 1	Three main types of tyre construction	2
Figure 2	Major components of a typical pneumatic tyre	4
Figure 3	Tyre cross-section showing the benefits of using	12
	precipitated silica in individual components	
Figure 4	Surface chemistry of carbon black and silica	14
Figure 5	Chemical structure of TESPT	17
Figure 6	Reaction mechanism for the modification of silica with	18
	TESPT	
Figure 7	Reaction mechanism for the formation of covalent silica to	18
	rubber bonds	
Figure 8	Compound formulation used in the study	23
Figure 9	Effect of PEG on cure time	23
Figure 10	Effect of PEG on tensile strength	24
Figure 11	Effect of PEG on heat build-up	24
Figure 12	Dumbell test piece	42
Figure 13	Trouser tear test piece	45
Figure 14	Sinusoidal strain and stress cycle	47
Figure 15	Vector stress or strain diagram	48
Figure 16	Flexing of the test piece during testing	49
Figure 17	Zwick abrasion tester	50
Figure 18	Cure time versus pphr PEG for 0 and 1 pphr Si-69	55
Figure 19	Scorch time versus pphr PEG for 0 and 1 pphr Si-69	57
Figure 20	Cure rate versus pphr PEG for 0 and 1 pphr Si-69	59
Figure 21	Mooney viscosity versus pphr PEG for 0 and 1 pphr Si-69	61
Figure 22	Crosslink density versus pphr PEG for 0 and 1 pphr Si-69	63
Figure 23	Δ (Torque) versus pphr PEG for 0 and 1 pphr Si-69	65
Figure 24	Tensile strength versus pphr PEG for 0 and 1 pphr Si-69	67
Figure 25	M300 versus pphr PEG for 0 and 1 pphr Si-69	68

<u>FIGURE</u>	TITLE	PAGE
Figure 26	Hardness versus pphr PEG for 0 and 1 pphr Si-69	72
Figure 27	Resilience versus pphr PEG for 0 and 1 pphr Si-69	73
Figure 28	Tear strength versus pphr PEG for 0 and 1 pphr Si-69	75
Figure 29	Heat build-up versus pphr PEG for 0 and 1 pphr Si-69	77
Figure 30	Tan δ versus pphr PEG for 0 and 1 pphr Si-69	79
Figure 31	Storage modulus, E' versus pphr PEG for 0 and 1 pphr	81
	Si-69	
Figure 32	Abrasion resistance versus pphr PEG for 0 and 1 pphr	84
	Si-69	