EFFECTS OF SOME MONOMERIC AND POLYMERIC ADDITIVES ON THE RHEOLOGICAL PROPERTIES OF AQUEOUS COLLOIDAL SUSPENSIONS OF TITANIUM DIOXIDE (TiO₂) AND ZIRCONIUM DIOXIDE (ZrO₂)

BY
CHANDRAMALAR A.V.MUTHIAH
DEPARTMENT OF CHEMISTRY
FACULTY OF SCIENCE
UNIVERSITY OF MALAYA

DISSERTATION PRESENTED FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF MALAYA

KUALA LUMPUR

(1999)

Dimikrofikan pada: 12-06-2000
No. Mikrofis: K1386
Jumlah Mikrofis: 3

PERPUSTAKAAN UNIVERSITI MALAYA

HAMSIAH BT. MOHAMAD ZAHARI
UNIT REPROGRAFI
PERPUSTAKAAN UNIVERSITI MALAYA

A509089525
CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>vi</td>
</tr>
<tr>
<td>CHAPTER 1: INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1) A Review on Rheology</td>
<td>1</td>
</tr>
<tr>
<td>1.1.1) Definition</td>
<td>1</td>
</tr>
<tr>
<td>1.1.2) General Aspects of Rheology</td>
<td>2</td>
</tr>
<tr>
<td>1.1.3) Some Rheological Properties</td>
<td>3</td>
</tr>
<tr>
<td>1.1.3.1) Fundamental Rheological Variables</td>
<td>4</td>
</tr>
<tr>
<td>1.1.3.2) Viscosity</td>
<td>5</td>
</tr>
<tr>
<td>1.1.3.3) Yield stress</td>
<td>6</td>
</tr>
<tr>
<td>1.2) Newtonian & non-Newtonian Behaviour</td>
<td>7</td>
</tr>
<tr>
<td>1.2.1) Description of Newtonian & non-Newtonian Behaviour</td>
<td>7</td>
</tr>
<tr>
<td>1.2.2) Description of non-Newtonian fluid</td>
<td></td>
</tr>
<tr>
<td>behaviour in shear</td>
<td>11</td>
</tr>
<tr>
<td>1.2.2.1) Shear-rate-dependent viscosity</td>
<td>11</td>
</tr>
<tr>
<td>1.2.2.2) Normal-stress effects in steady shear</td>
<td>11</td>
</tr>
</tbody>
</table>
1.2.3) Classification of non-Newtonian fluids

1.2.3.1) Time-independent non-Newtonian fluids

 Bingham plastics

 Pseudo-plastic fluids

 Dilatant fluids

1.2.3.2) Time-dependent non-Newtonian fluids

 Thixotropic fluids

 Rheopetic fluids

1.2.3.3) Viscoelastic materials

1.3) A Review on Colloidal System

1.3.1) Background

1.3.2) Stability of a Colloidal Dispersion

1.4) A Review on Interparticle Forces

1.4.1) Electrostatic and Van der Waals Forces

1.4.2) Steric Forces

1.4.2.1) A mixing effect

1.4.2.2) An entropic effect

1.4.3) Hydration Forces

1.4.4) Bridging Forces
1.4.5) Charged Patch Interaction 38
1.4.6) Hydrophobic Forces 40
1.4.7) Depletion Forces 41
1.5) Measurement Methods 43

1.5.1) Drag flows 43
 Sliding plates 43
 Concentric Cylinder Rheometer 44
 Cone and Plate Rheometer 45
 Parallel Disks 47
 Vane-in-cup 47

1.5.2) Pressure-driven flows 49
 Capillary Rheometer 49
 Slit Rheometer 50
 Axial annular flow between parallel plates 51

1.6) Previous Studies on ZrO₂ and TiO₂ 52

CHAPTER 2: EXPERIMENTAL 58

2.1) Materials 58

2.2) Methods 61

2.2.1) Preparation of Samples 61

2.2.1.1) The Treatment of TiO₂ powder 65
CHAPTER 3 : RESULTS AND DISCUSSIONS 67

3.1) A Review on Treated TiO₂ 67

3.2) Cyclohexane multi carboxylic acids 68

3.3) Amphoteric amino acids 91

3.4) Copolymers 111

3.5) 2-hydroxyethyl cellulose of different molecular weights 117

CHAPTER 4 : CONCLUSION 135

SUGGESTIONS 137

REFERENCES 138

APPENDIX A : The structures of the additives

APPENDIX B : Publications
ABSTRACT

Rheological properties (in particular, the yield stress and to a smaller extent, the viscosity) of zirconium dioxide, ZrO₂ and titanium dioxide, TiO₂ aqueous suspensions in some monomeric and polymeric additive solutions at various concentrations were measured at various pH. The additives are categorized into four groups as follows:

i) Cyclohexane multi carboxylic acids comprising cis-1,2-cyclohexanedicarboxylic acid, trans-1,2-cyclohexanedicarboxylic acid, trans-1,4-cyclohexanedicarboxylic acid, 1,3,5-cyclohexanetricarboxylic acid, disodium salt of ethylenediamine tetraacetic acid (EDTA) and 1,2,3,4,5,6-cyclohexanehexacarboxylic acid.

ii) Amphoteric amino acids comprising glycine, iminodiacetic acid (IDA), disodium salt of nitrilotriacetic acid (NTA), DL-aspartic acid and EDTA.

iii) Copolymers comprising the disodium salt of α-methyl styrene maleate copolymer and disodium salt of diisobutylene maleate copolymer.

iv) 2-hydroxyethyl cellulose of molecular weights 15 000, 90 000 and 720 000 Dalton.
In general, the effects of additives on the increase or decrease of the maximum yield stress and the shift of the pH of the maximum yield stress are quite similar for both types of suspensions except for the followings:

i) the inability of the TiO$_2$ suspension to reach complete dispersion at basic pH end in the absence and presence of additives (except when 0.1 and 0.5dwb% cis-cyclohexanehexacarboxylic acid were used)

ii) in the presence of hydroxyethyl cellulose (M_w 15 000), ZrO$_2$ suspension cannot form a stable dispersion as sedimentation occurs soon after sonication.

Various interparticle forces have been invoked to explain the yield stress-pH and viscosity-pH behaviour.
ABSTRAK

Sifat-sifat reologi (secara khusus, tegasan alah dan sedikit sebanyak mengenai kelikatan) bagi penyerakan akues zirkonium dioksida, ZrO$_2$ dan titanium dioksida, TiO$_2$ dengan kehadiran berbagai jenis larutan ‘additives’ monomerik dan polimerik dalam berbagai kepekatan telah diukur pada berbagai pH. ‘Additives’ yang digunakan telah dibahagikan kepada empat kumpulan seperti berikut:

i) Kumpulan multi karboksilik asid yang dianggotai oleh sis-1,2-sikloheksanedikarboksilik asid, trans-1,2-sikloheksanetikarboksilik asid, trans-1,4-sikloheksanedikarboksilik asid, 1,3,5-sikloheksanetrikarboksilik asid, garam disodium bagi etilendiamine tetraacetik asid (EDTA) dan sis-sikloheksaneheksakarboksilik asid.

ii) Kumpulan amfoterik amino asid yang dianggotai oleh glisin, iminodiacetik asid (IDA), garam disodium bagi nitrilotriasletik asid (NTA), DL-aspartik asid dan EDTA

iii) Kumpulan kopolimer yang dianggotai oleh garam disodium bagi α-metil stiren maleate kopolimer dan garam disodium bagi diisobutilen maleate kopolimer

iv) Kumpulan 2-hidroksietil sellulosa dengan jisim molekul relatif 15 000, 90 000 dan 720 000
Secara am, kesan ‘additive’ terhadap tren tegasan alah maksimum dan peralihan pH tegasan alah maksimum adalah lebih kurang sama bagi kedua jenis penyerakan kecuali berikut:

i) ketidakupayaan penyerakan TiO₂ untuk mencapai penyebaran penuh di pH basik hujung dengan ketidakhadiran dan kehadiran ‘additives’ (kecuali apabila 0.1 dan 0.5dwb% sis-sikloheksaneheksakarboksilik asid telah digunakan)

ii) dengan kehadiran 2-hidroksietil sellulosa (jisim molekul relatif 15 000), penyerakan ZrO₂ tidak dapat menghasilkan satu penyebaran yang stabil kerana pemendakan berlaku sebaik sahaja dialihkan daripada ‘sonication’.

Berbagai daya serakan koloid telah digunakan untuk menjelaskan berbagai kelakuan tegasan alah-pH dan kelikatan-pH.
ACKNOWLEDGEMENT

I would like to convey my heartfelt thanks to my ever-supportive consultant, Prof. Dr. Lim Yau Yan for his continuous guidance and support given throughout this project. I would like to share the gleefulness that I feel upon completion of this project successfully, equally with my dedicated consultant. I also would like to express my sincere appreciation to Dr. Leong Yee Kwong for his constructive guidance and continuous encouragement. Special thanks also goes to my supervisor Prof. Dr. Chan Chee Yan for his precious time and dedication provided for the fulfilment of this project.

For my supportive parents, sisters, brothers and friends, thanks to you all.
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Parallel-plate depiction of shear rate</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Flow curve of a Newtonian fluid</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>Flow curves of fluids without yield stress and with yield stress</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>Viscosity versus shear rate for a shear-thinning fluid</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>Shear stress versus shear rate for a shear-thinning fluid</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>Shear stress (σ) versus shear rate ($\dot{\gamma}$) for Bingham body</td>
<td>13</td>
</tr>
<tr>
<td>7</td>
<td>Shear stress (σ) versus shear rate ($\dot{\gamma}$) for pseudoplastic or shear thinning fluid</td>
<td>14</td>
</tr>
<tr>
<td>8</td>
<td>Shear stress (σ) versus shear rate ($\dot{\gamma}$) for dilatant or shear-thickening fluid</td>
<td>15</td>
</tr>
<tr>
<td>9</td>
<td>Maxwell model for viscoelasticity</td>
<td>19</td>
</tr>
<tr>
<td>10</td>
<td>Distribution of ions around a charged particle</td>
<td>28</td>
</tr>
<tr>
<td>11</td>
<td>Total interaction energy curves for two repulsion curves of different heights</td>
<td>30</td>
</tr>
<tr>
<td>12</td>
<td>Potential energy of interaction as a function of distance of particle separation for $\kappa a \gg 1$</td>
<td>31</td>
</tr>
</tbody>
</table>
Figure 13: Particles sterically stabilized by polymer coating

Figure 14: Interaction potential for polymerically stabilized suspension

Figure 15: Schematic illustration of bridging flocculation by multi-charged polymer

Figure 16: A schematic diagram of charged patch interaction between two colloidal particles

Figure 17: Schematic illustration of sliding plate rheometer

Figure 18: Schematic diagram of high shear rate concentric cylinder test fixtures

Figure 19: Typical shearing geometry of cone and plate

Figure 20: Schematic illustration of parallel plate rheometer

Figure 21: Schematic illustration of vane fixture

Figure 22: Schematic of capillary rheometer

Figure 23: Schematic of slit rheometer with flush-mounted pressure transducers

Figure 24: Schematic of axial annular flow die with wall pressure difference measurement
Figure 25: The effect of cis-1,2-cyclohexanedicarboxylic acid on the yield stress-pH behaviour of 53wt% ZrO₂ suspension

Figure 26: The effect of trans-1,2-cyclohexanedicarboxylic acid on the yield stress-pH behaviour of 53wt% ZrO₂ suspension

Figure 27: The effect of cis-1,2-cyclohexanedicarboxylic acid on the yield stress-pH behaviour of 40wt% treated TiO₂ suspension

Figure 28: The effect of trans-1,2-cyclohexanedicarboxylic acid on the yield stress-pH behaviour of 40wt% treated TiO₂ suspension

Figure 29: The effect of trans-1,4-cyclohexanedicarboxylic acid on the yield stress-pH behaviour of 53wt% ZrO₂ suspension

Figure 30: The effect of 1,3,5-cyclohexanetricarboxylic acid on the yield stress-pH behaviour of 53wt% ZrO₂ suspension

Figure 31: A representation of particle bridging by an adsorbed trans-1,4-cyclohexanedicarboxylic acid molecule
Figure 32: The effect of trans-1,4-cyclohexanedicarboxylic acid on the yield stress-pH behaviour of 40wt% treated TiO$_2$ suspension

Figure 33: The effect of 1,3,5-cyclohexanetricarboxylic acid on the yield stress-pH behaviour of 40wt% treated TiO$_2$ suspension

Figure 34: The effect of EDTA on the yield stress-pH behaviour of 53wt% ZrO$_2$ suspension

Figure 35: The effect of cis-cyclohexanehexacarboxylic acid on the yield stress-pH behaviour of 53wt% ZrO$_2$ suspension

Figure 36: The effect of EDTA on the yield stress-pH behaviour of 40wt% treated TiO$_2$ suspension

Figure 37: The effect of cis-cyclohexanehexacarboxylic acid on the yield stress-pH behaviour of 40wt% treated TiO$_2$ suspension

Figure 38: The effect of glycine on the yield stress-pH behaviour of 53wt% ZrO$_2$ suspension

Figure 39: The effect of glycine on the yield stress-pH behaviour of 40wt% treated TiO$_2$ suspension
Figure 40: The effect of iminodiacetic acid on the yield stress-pH behaviour of 53wt% ZrO₂ suspension

Figure 41: The effect of iminodiacetic acid on the yield stress-pH behaviour of 40wt% treated TiO₂ suspension

Figure 42: The effect of nitrilotriacetic acid on the yield stress-pH behaviour of 53wt% ZrO₂ suspension

Figure 43: The effect of DL-aspartic acid on the yield stress-pH behaviour of 53wt% ZrO₂ suspension

Figure 44: The effect of nitrilotriacetic acid on the yield stress-pH behaviour of 40wt% treated TiO₂ suspension

Figure 45: The effect of EDTA on the yield stress-pH behaviour of 53wt% ZrO₂ suspension

Figure 46: The effect of EDTA on the yield stress-pH behaviour of 40wt% treated TiO₂ suspension

Figure 47: Maximum yield stress versus concentration of amphoteric amino acids in ZrO₂ suspension (mole per 10³g ZrO₂)
Figure 48: pH of maximum yield stress versus
concentration of amphoteric amino acids in
ZrO_2 suspension (mole per $10^3\text{g } ZrO_2$)

Figure 49: Maximum yield stress versus concentration of
amphoteric amino acids in treated TiO_2
suspension (mole per $10^3\text{g } TiO_2$)

Figure 50: pH of maximum yield stress versus
concentration of amphoteric amino acids in
treated TiO_2 suspension (mole per $10^3\text{g } TiO_2$)

Figure 51: The effect of disodium salt of α-methyl styrene
maleate copolymer on the yield stress-pH
behaviour of 53wt% ZrO_2 suspension

Figure 52: The effect of disodium salt of diisobutylene
maleate copolymer on the yield stress-pH
behaviour of 53wt% ZrO_2 suspension

Figure 53: The effect of HEC-15 000 on the yield stress
pH behaviour of 37.5wt% pure grade TiO_2
suspension

Figure 54: Illustration of bridging flocculation, steric
stabilization, depletion flocculation and
depletion stabilization effects at various
concentration of polymer chains
Figure 55: The effect of HEC-15 000 on the yield stress-pH behaviour of 40wt% treated TiO₂ suspension

Figure 56: The effect of HEC-90 000 on the yield stress-pH behaviour of 40wt% treated TiO₂ suspension

Figure 57: The effect of HEC-720 000 on the yield stress-pH behaviour of 40wt% treated TiO₂ suspension

Figure 58: The effect of HEC-15 000 on the viscosity-pH behaviour of 40wt% treated TiO₂ suspension at shear rate, 58.6s⁻¹

Figure 59: The effect of HEC-15 000 on the viscosity-pH behaviour of 40wt% treated TiO₂ suspension at shear rate, 14.7s⁻¹

Figure 60a: The effect of pH on the logarithmic plots of viscosity-shear rate behaviour for 40wt% treated TiO₂ suspension

Figure 60b: The effect of pH on the logarithmic plots of viscosity-shear rate behaviour for 40wt% treated TiO₂ suspension containing 0.05dwb% of HEC-15 000
Figure 60c: The effect of pH on the logarithmic plots of viscosity-shear rate behaviour for 40wt% treated TiO₂ suspension containing 0.3dwb% of HEC-15 000

Figure 60d: The effect of pH on the logarithmic plots of viscosity-shear rate behaviour for 40wt% treated TiO₂ suspension containing 0.5dwb% of HEC-15 000

Figure 61: The effect of HEC-15 000 on the power law exponent (n)-pH behaviour of 40wt% treated TiO₂ suspension