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CHAPTER 2 LITERATURE REVIEW

2.1 INTRODUCTION

In the past few decades, modal analysis has been a fast developing technique in
the experimental evaluation of the dynamic properties of both mechanical systems and
civil engineering structures. It has served a wide range of objectives such as
identification and evaluation of vibration phenomena, validation, correction and
updating of analytical dynamic models, development of experimentally based dynamic
models, structural integrity assessment, structural modification and damage detection,
establishment of criteria and specifications for design, test, qualification and
certification. [n recent years, many damage identification and updating methods have
been proposed and this chapter presents a review of the current literature. In addition,
this chapter presents some work done on the effect of boundary conditions on dynamic

properties.

22 BOUNDARY CONDITIONS

In many cases, laboratory modal testing for beams are conducted under free-free
or cantilever boundary conditions. However, in actual situations, most structures do not
have these boundary conditions. Commonly, they are simply supported, fixed supported
or combination of both boundary conditions. A change in boundary condition is one of
the major factors influencing the dynamic properties of a structure.

In order to better understand the effect of a boundary condition, the classical
theoretical approach is presented. According to Timoshenko et al. [1], the modal
superposition technique is used to develop the transverse free vibration of beams with

various boundary conditions. The beam displacement is expressed as a linear
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combination of eigenfunctions or mode shapes. The typical normal function for
transverse free vibrations of a prismatic beam is

X = C,sin Ax + Cycos Ax + Cs sinh Ax + C4 cosh Ax Equation 2.1
where the eigenvalue A, and C,, C,, C; and C4 are constants to be determined from each

particular case of boundary condition.

2.2.1 SIMPLY SUPPORTED BEAM

The boundary conditions of a simply supported beam shown in Figure 2.1 are

(X)r=0=0 Equation 2.2a
(d*X7dx?) x =0 =0 Equation 2.2b
(X)x=1=0 Equation 2.2¢
(d2X/dx?), -, =0 Equation 2.2d

which connote the fact that the displacement and the bending moment are zero at both

end of the beam.

I I

Figure 2.1 Timoshenko simply supported beam [1]

In order to solve Equation 2.1, it is useful to write the general expression for this normal
function in the following form:
X = Cj(cos Ax + cosh Ax) + Cy(cos Ax — cosh Ax) +

C3(sin Ax + sinh Ax) + Ca(sin Ax — sinh Ax) Equation 2.3
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From Equations 2.2a and 2.2b, the constants C; and C; in Equation 2.3 must be
equal to zero and from the Equations 2.2¢ and 2.2d, C; and C; are obtained in equal
since C; = C, and

sin A/ =0 Equation 2.4
which is the frequency equation for the case under consideration. The non zero positive
consecutive roots of Equation 2.4 are A/ = iz for i = 1, 2 .3 ..., oo. This frequency

equation can be written as
A =— Equation 2.5

The deflected shape for various bending modes of vibration given by the normal

function in Equation 2.3, with C; = C, = 0 and C3 = C4 = D, can be written as
X, =D, sinkx=D, sinl—7lE Equation 2.6

where,
X, 1s the deflection of the bending mode shape i,
i is the mode shape fori= 1,2, 3, ..., e,
D; is the amplitude of the mode shape i,
[ 1s the span of the beam.
Thus, the bending mode shapes of a simply supported beam are in sine curves.

The angular frequencies corresponding to these A; values are obtained as

-2 2
w, = A} i er £ Equation 2.7
pA [ PA

and the natural frequencies for corresponding bending mode shapes are

. i‘m |EI :
fi= @i _ 1_725 = Equation 2.8
2 207\ pA

I . . .
where \/; 1s the radius of gyration.
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It is seen that the natural frequency of vibration for any mode is proportional to the
radius of gyration of the cross section and inversely proportional to the square of the

length.

2.2.2 FREE-FREE BEAM

The boundary conditions of free-free beams are

(dX/dx)x-0=0 Equation 2.9a
(d2X/dx?) (<=0 Equation 2.9b
(dX/dx)y =;=0 Equation 2.9¢
(d°X/dxY) =, =0 Equation 2.9d

which connote the fact that the shear force and the bending moment are zero at both
ends of the beam.
In order to satisfy Equation 2.3 for free-free condition, C; and C4 must be equal
to zero from Equations 2.9a and 2.9b, so that
X=C(cos Ax + cosh Ax) + Cs(sin Ax + sinh Ax) Equation 2.10
From Equations 2.9¢ and 2.9d,
Ci(-cos Al + cosh Af) + Cs(-sin Al + sinh A/) =0 Equation 2.11a
Ci(sin Al + sinh Al) + Cs(-cos Al + cosh A)) =0 Equation 2.11b
The solution of the constants C; and Cs;, which is different from zero, can only be
obtained in the case when the determinant of Equations 2.11a and 2.11b vanishes. In
this manner the following frequency equation is obtained:
(—cos Al + cosh AJ): — (sinh? Al — sin® A/) =0
cos® Al + cosh® Al — 2cos Alcosh Al — sinh? Al + sin® AJ) = 0
cos® Al + sinh® A/ + cosh® Al ~ sinh® Al — 2cos Alcosh /= 0 Equation 2.11c¢
where,

cos’ Al +sinh® Al =1 cosh? A/ —sinh® A/ =1
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Hence, Equation 2.11¢ can be written as:
2 —2cos AMcosh A/ =0
cos AMcosh Al=1 Equation 2.12
By solving mathematically method, the consecutive roots of Equation 2.12 are
hol M/ Aol Aal hal hsl Aol
0 4.73 7.853  10.966 14.137 17.279 23.5619

The nonzero roots can be formulated approximately as:

A=+ Y)n Equation 2.13

The values of constants C; and Cj varies for each bending mode of vibration, by
substituting the consecutive roots of equation 2.12 for each corresponding bending
mode, the ratio C,/C; can be found. Then the deflection shape of each vibration mode
can be obtained from Equation 2.10. Figures 2.2a, 2.2b and 2.2¢ presented the first three
vibration modes for corresponding frequencies f1, f> and f5.

On these vibration modes, the rigid body displacements of the beam can be
superimposed with the lower bending modes. This combined rigid body motion may be
characterized as

X=c;+cx Equation 2.14
This expression presents a translator displacement together with the rotation that can be
superimposed on free vibration.

The natural frequencies for corresponding bending modes can be found by using

Equation 2.7.

. ] )’ 2
fi :—a—)’—zgj-/%li £ i#0 Equation 2.15
2r 21 pA

It is generally believed that the higher the stiffness of the support, the higher will
be the natural frequencies, when all other factors remain unchanged. However based on

the above analytical observation on free-free and simply supported beams, the flexural
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natural frequencies of free-free beams are higher than the natural frequencies of simply

supported beam, as shown in equation 2.16.

. 1732 .2
S oo = %?L)“EVE% > foimpy = % E—jl ifi=0 Equation 2.16
2 - npl 3 *fp

Moreover, Mostafiz [6] also found that the less the stiffness of the support of a uniform

rectangular test plate, the higher the natural frequency.

T~
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Figure 2.2 First three modes of vibration for free-free beam [1]

2.3 DAMAGE IDENTIFICATION METHODS

Current damage-detection methods are either visual or localized experimental
methods such as ultrasonic, magnet field, radiograph, eddy-current and thermal field
methods. All these are only capable of detecting damage on or near the surface of the
structure. However, structures today have increased so much in complexity and size that
global damage identification methods have to be applied to evaluate and diagnose their
state of health. Modal analysis or vibration testing is a technique that is able to provide a
global way of damage identification of a structure from the changes of its dynamic
properties. The basic idea is that modal properties that is natural frequency, mode shape

and modal damping, are functions of the physical properties of a structure in terms of its
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mass, stiffness and damping. Therefore, changes in the physical properties will cause

changes in the modal properties.

2.3.1 NATURAL FREQUENCY CHANGES
The natural frequency of a structure bears a direct relationship with the structural
stiffness. For an undamped vibrating system with mass m, the relationship can be

written as

EI .
W, = |— Equation 2.17

where E7 is the stiffness and a is the natural frequency for mode i of the system.
Based on Equation 2.17, a reduction in stiffness £/ of a structure leads to the
reduction of the natural frequency for a corresponding mode. Thus the natural
frequency of a vibrating system is a useful global parameter to indicate the

occurrence of damage and to evaluate the severity or state of damage in a structure.

Cawley and Adams [2] pointed the fact that the stress distribution in a vibrating
structure is non-uniform and each change in natural frequency is different to the
corresponding mode shape. Any localized damage would affect each mode
differently and the changes in natural frequencies depend on the particular location
of the damage. Therefore, natural frequency changes are not only useful to monitor
globally the structural health condition but is also able to identify the damage

location, which is local in nature.

The degree of reduction in natural frequency is dependent on the position of the
defect relative to the mode shape for a particular mode of vibration [2,3]. When the
damage is located at the regions of high curvature of the mode shapes, the reduction
of natural frequency becomes more significant [4]. Similar result was obtained from
Narayana and Jebaraj [5], where the percentage change in natural frequency was

11
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higher for the crack at high strain position than for the crack at low strain position.
They proposed an energy concept to relate the natural frequency with the strain
mode and directly used the natural frequencies to identify and locate the crack. The
theoritical background and case study of Narayana and Jebaraj [5] work is presented

herein.

The general equation for transverse free vibration in bending mode of a beam is

2

2 2
i[EIa J de+ pd dx 2~ 0 Equation 2.18
8

o ox 2
By solving Equation 2.18, the natural frequency is
! 2 2,2
jE[(x){d y/dx) dx
0

(9] :ﬂ‘: =
J.[mdzy dx
0

=<

Equation 2.19

where,

EI )y . .
U= 5 J.l(d Yy i dx? ydx is the strain energy.
0

! 2 . . .
V= g _[ d°y dx is the kinetic energy.
2 70

Taking the variation of A from Equation 2.18, then O\ is

oA = ou _ Uan Equation 2.20
2 4
and divide OA with &,
0
o4 = ou_or Equation 2.21
A U ¥V

when there 1s only a small damage or crack on the beam, change in mass is very small,

dm=0=0FV=0.So

12
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! 2
Ed| [ I{d’y/dx’} dx
04 _0oU _ i
A

Equation 2.22
E[ Iy dey dx
4]

By considering 8U from Equation 2.22, and assuming the crack occur at /, with a crack

width of Ax, U can be written as

a 2 2 2 2 2
oU =8| [ B2 e [ B A2 e 421 e | Equation 2.23
=0 d 2 dx2 /o +Bx dxz

X ly

Since the change in curvature is only significant at the crack location, the
changes is from [, to /, + Ax. On the other hand, the change in curvature from 0 to /, and

lo + Ax to [ of the above equation can be considered insignificant or zero. Then,

) 2
EU:{OWL [’ ”E[{‘; f} dx+o}
ly X

2.} 2?2
aU:E{j"’ “al{zxf} de+ [ “J-a{zxzy} dx:}
A ‘ ly

5 2 5 2
oU = EI a J.IO )4 f dx+J‘lo Y d g} dx Equation 2.24
17 dx Iy dx

Since the integration limit is for a small crack width of only Ax, Equations 2.24 and 2.22

can be written as

2,12 2. )72
oU = 1 L1EIL pr v al DXL A
[ | dx dx

aU:E[{dZy}z Ax[g a{dzy/dxz}i__.zo}
at..l

+
: I {d’y/dx*}}

at.dy

o _ou _{ylddy, Ao adyldc),
I {d’y/dx*}]

at..dy

} Equation 2.25
[td?yrd®y ax
¢}
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Equation 2.25 indicates that the variation of frequency parameter OA/A is a function of
square of transverse strain of the beam at the crack location. Also, it is a function of the
variation of moment inertia, 6//I and variation of the square of transverse strain at the
crack location.

Equation 2.25 can also be applied to the free vibration in the torsional mode.
This equation can be developed by replacing the displacement parameter, y and moment

inertial in Equation 2.25 with the radian parameter, & and torsional inertial, J.

+
J {d*0/dx*)

at..dy |

Equation 2.26

at..ly at..ly
AU

ol au {d’0/dx’); Ax{a] o1d’ 60/ dx’ }]

J‘I{dze/dxz}zdx
0

The above equation indicates that the variation of frequency parameter JA/A is a
function of square of torsional strain of the beam at the crack location. Also it is a
function of the variation of torsional inertia, 8J/.J and of the squared torsional strain at
the crack location. Thus, it indicates that change in natural frequency for flexural and
torsional modes due to crack damage is non-linear.

Using Equations 2.25 and 2.26, graphs of the frequency changes are plotted
against the length of a cantilever beam. These are shown in Figure 2.3 with normalized
maximum value at the fixed end at unity. It was observed that the changes in natural
frequencies were maximum if the crack was located at the peak or trough of the strain
mode, and they were of minimum value if the crack location was at the node of the
strain mode. The locations of peak or trough and node of the bending and torsional

strain modes tor the cantilever beam are listed in Table 2.1.
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" For first four bending modes
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Figure 2.3 Change in frequency versus crack location of cantilever beam (first four

Crack location

bending and four torsional modes) [5]

| Mode Peak/trough locations Node locations
Bending mode 1 | 0.0L 1.0L

Bending mode 2 | 0.0L, 0.5287L 0.2175L, 1.0L

Bending mode 3 | 0.0L, 0.3075L, 0.7087L 0.13251,, 0.4907L, 1.0L

Bending mode 4

0.0L, 0.22L, 0.5L, 0.795L

0.0945L, 0.356L, 0.6416L, 1.0L

Torsional mode 1

0.0L

1.0L

Torsional mode 2

0.0L, 0.6667L

0.3333L, 1.0L

Torsional mode 3

0.0L, 0.4L, 0.8L

0.2L, 0.6L, 1.0L

Torsional mode 4

0.0L, 0.285L, 0.5725L, 0.8775L

0.1425L, 0.4275L, 0.7125L, 1.0L

Table 2.1 Peak or trough and node locations of strain mode shapes for cantilever beam

(3]

Referring to Table 2.1, there are seven peaks or trough and seven nodes for both

strain modes. Therefore, the crack can be located in the vicinity of any one of the 28

locations, 14 locations from bending modes and 14 location from torsional modes. Thus
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the accuracy of the prediction will be approximately L/28, and a case studyv was carried
out on the cantilever beam.

From Table 2.2, the maximum percentage change in natural frequencies for the
bending modes occurred for mode 3. Based on the observation from Table 2.1, it was
observed that the possible crack location was at 0.0L (fixed end), 0.3075L or 0.7087L.
The maximum percentage change in frequency for torsional modes occurred for mode 2
and the possible crack location would be at 0.0L or 0.6667L. The crack was not located
near to the fixed end because the change in the first bending mode and torsional mode
was much less. Therefore, the possible crack location was between 0.6667L and
0.7078L from the fixed end. The exact crack location was 0.67L for 50% crack depth.

The predicted result matched closely the exact crack location.

Mode no. Percentage change in frequencies
Bending modes Torsional modes
1 0.1697 2.0114
2 3.1704 7.0786
3 . 4.2831 1.5722
4 1.9605 4.6405 |

Table 2.2 Percentage change in frequency due to crack [5]

2.3.2 ROTATIONAL SPRING MODEL

A crack in the beam can be modeled as a ‘fracture hinge’ concept or rotational
spring model in which the spring stiffness represents the crack stiffness, 4, at the crack
location [7,8,9]. The crack stiffness is constant for all vibration modes and the
1ntersection point of the crack stiffness at various natural frequencies, ®;, along the axial
direction of the beam represent the possible crack location. In order to obtain good
results, the minimum of three measurements of natural frequencies should be obtained

experimentally.

16
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In a study carried out by Boltezar et al. [7], the single crack beam was modeled
into two segments of beam and the rotational spring was modeled as a crack between

the two segments. The model is shown in Figure 2.4.

- |
|

: | +
T

) 1 l uy(x,t) l us(x,t)
First segment k, Second segment

A MO ————

B C

Figure 2.4 Model of the cracked free-free beam with rotational spring [7]

Displacement mode shape for both the segments is given in Equation 2.27 where
u; and u, are displacements on the first and second segment.

u,;; = Cysin Ax + Cycos Ax + Csysinh Ax + Cy cosh Ax
Uy, = DysinAx + Dy cos Ax + D3 sinh Ax + DycoshAx  Equation 2.27

At the crack position B, the continuity condition requires equal displacements, moments
and shear forces at both sides of a crack except the rotation.
Uy =Uy, Uy =uy, Uy =us, Equation 2.28

The rotation between two segments is related to the moment of each section and the

crack stiffness &,.

”

U, + ~kl‘1 =u), Equation 2.29

17
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Boundary and continuity conditions result in a set of 8 homogeneous linear algebraic
equations for eight unknown coefficients. For a non-trivial solution, the determinant
defined in Equation 2.30 must be zero. In the determinant of Equation 2.30, § = k/E[

denotes relative flexural stiffness that models the crack.

0 -1 0 1 0 0 0 0
| -1 0 1 0 0 0 0 0
‘ -3 AR ~cosAR sinh AR cosh AR sin AR cosAR  -sinhAR - cosh AR|
- cos AR sin AR cosh AR sinh AR cosAR  —-sinAR -coshAR —sinh AR|
fIRA5)= A ) p) A . A ) =0
!co\'/lR - gsm AR -sinAR —~—¢§cos/lR coshle+gsmhiR sxnhM+EcoshAR -cosAR  sinAR  -coshAR -sinhAR
i’ sin AR cos AR sinh AR cosh AR -sinAR ~cosAR -sinhAR ~coshAR!
: 0 0 0 0 -sinAL ~cosAL sinhAL cosh AL (
\ 0 0 0 0 ~cosAL sinAL  coshAL  sinhAL |
Equation 2.30
where,

k. : : o
6 =—- isrelative stiffness at the crack position

~

. pAw”

is the eigenvalue

In the procedure of identifying the crack location, firstly, the natural frequencies
o; of flexural vibrations of the free-free beam were measured. Next, the eignevalues A;
were computed using the measured natural frequencies and Young’s modulus of the
intact beam. Finally, the relative stiffness & is computed from Equation 2.30 as a
function of possible crack location for each of the natural frequencies and all of the
frequencies were presented on the same graph as depicted in Figure 2.5. In the graph,
the intersection of the relative stiffness value § shows the possible crack location.

The results of free-free beam were plotted against the relative possible crack
location R/L and are shown in Figure 2.5 for two different values of the relative crack
depth, a/h, 11.3 and 36.3%. The true crack location was at R/L = 0.38 where the

percentage difference with true crack location for both relative crack depths was less

18



Chapter 2 Literature Review

than 1%. These results indicated that the rotational spring model provided high
sensitivity and high accuracy in damage identification. However, to produce satisfactory
results, the changes in natural frequencies must be measured with great accuracy.
Furthermore, since the free-free beam is symmetrical, there will be two possible crack

locations indicated but only one is correct.
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Figure 2.5 Relative crack stiffness versus crack location for the first 6 natural
frequencies and for 2 different relative crack depths: (a) a/h = 11.3%,; (b) a/h = 36.3%

[7]

2.3.3 SENSITIVITY CONCEPT
The sensitivity concept is based on the premise that the ratio of changes in two
natural frequencies 1s a function of the damage location A(r), if changes in stiffness are

independent of frequency [2].

Sw.
90 _ h(r) Equation 2.31
ow ;
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Positions where the theoretically determined ratio of changes in two natural frequencies
S, 0w, equals the experimentally measured value dw./dw,, are therefore possible
damage sites.

The ratio of changes in two theoretical natural frequencies due to the selected
damage element is calculated using theoretical or finite element methods. The changes
in theoretical natural frequencies are a function of the modal sensitivity [2]. Therefore,
the ratio of measurement changes in natural frequencies also equals the ratio of

theoretically measured sensitivities and can be written as

—t = Equation 2.32
ow, OA,

where

oa,; . . . . . :
-5—’ 1s the measured ratio of changes in frequencies for two modes, i and ;.

oA, . : : e
g;i» is the ratio of theoretically measured sensitivities for those modes and element r.
A

Jr

The theoretically measure sensitivity is

A = Equation 2.33

where 0K is the change in stiffness due to damage at particular element in the structure,
M 1s the element mass and ¢ is the eigenvector.

Equation 2.32 is true only when element r is exactly representing the crack on
the test structure. So the error index is introduced as

ow, OA,
e, = 9T X Equation 2.34
ow; O

jr
where e, represents the localization error of element r and when e, = 0 is an indication of

the damage location.
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Accuracy of sensitivity-based method is dependant on either the number of
modes or the type of modes that are used in the calculation [10]. The quality of the finite
element model or other theoretical model used to compute the sensitivities is also a
factor determining the accuracy. This method is most useful for basic structures where

the damage only affects one significant stiffness component in the structure [4].

234 MODE SHAPE

Mode shapes are inherent properties of a structure and they do not depend on the
forces or load acting on the structure [11]. Changes in mode shapes depend on the
material properties that is mass, stiffness and damping or boundary conditions of the
structure. Mode shapes have no unique values, and hence no units associated with them.
However, mode shapes are unique as it represent the motion of one point relative to
another at resonance.

When a localized damage occurs, material properties in the structure are«
affected, hence stiffness changes around the damage area rather than the other areas\
changes. Since changes in mode shapes depend on the material properties, monitoring -
the changes gives a more direct and significant indication of the damage occurring in -

the structure.

2.3.4.1 MODE SHAPE DEVIATION

The change in displacement mode shapes at a particular point is related to the
stiffness of a structure. A localized damage occurs when stiffness in the damaged area is
affected more than other areas of the structure. Similarly, changes in displacement mode
shapes at a damaged location are also affected compared to other locations. Pandey [12]
used a finite element model of a simply supported beam to study the absolute mode

shape deviation obtained by comparing the intact displacement mode shapes with the
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damage displacement mode shapes at particular nodes. The absolute mode shape

deviation can be written as

D, = ¢ — b l Equation 2.35

where ¢ is the intact displacement mode shape and ¢ is the damage displacement
mode shape at # node.

The deviation in displacement mode shapes was distributed throughout the span
of the beam and the results are shown in Figure 2.6. It was apparent that the deviation
was quite insignificant. In a paper written by Narayana [5], deviation in mode shape was
not sufficient for indicating the location of the crack. A finite element cantilever beam
was considered, with its low value of maximum deviation at the crack location
compared to deviations at other locations throughout the span of beam. The differences

were very small and insignificant to identify the crack location.

Dif{erence

Mode 5

Mode 4@

Mgde 3

Mode 2

] 15
Dieyy o]
O Pump, 20 T Mode !

Figure 2.6 Absolute deviations in displacement mode shapes between the intact and

damaged (element 13 with 50% reduction in E) simply supported beam [12]
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2.3.4.2 CURVATURE MODE SHAPE
Curvature mode shape is related to the flexural stiffness of the beam’s cross

section. Curvature at a point is given by
V"= M/(EI) Equation 2.36

m which v"' is the curvature of the section and M its bending moment. Curvature is also

proportional to the bending strain at the section.
e=y/R=ypv" Equation 2.37
where ¢ is strain of the section and R is the radius of the curvature at the section.

When there is a crack or other damages in a structure, bending stiffness (EI) of
the structure at the crack section or in the damaged region reduces, increasing the
magnitude of curvature at that section of the structure. The changes in curvature are
local in nature and hence can be used to detect and locate a crack or damage in the
structure. Theoretically, the magnitude of change in curvature is inversely proportional

to the value of E1.

Pandey [12] introduced a new parameter called curvature mode shape for
identifying and locating damage in a structure. In his investigation, only the translation
degree of freedom along Y axis (vertical direction) was considered in the analysis. This
was done because in any experimental work, rotations are not generally measured
because of difficulty in their measurement. Moreover, since the main interest is in the

flexural modes of vibration, translation along the X axis can be neglected.

The displacement mode shapes obtained from a FEM simply supported beam
were used to calculate curvature mode shapes and they were obtained numerically by

using a central difference approximation given as

V"= Vet — 2n 1 )/0° Equation 2.38
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where h is the length of the elements and y, is the displacement mode shape at » node.
The absolute difference between the curvature mode shapes of the intact and the
damaged case were plotted and shown in Figure 2.7. The maximum difference for every
curvature mode shape occurs in the damaged zone located at 13" element. These
numerical results demonstrate the effectiveness of curvature mode shapes in detecting
and locating a state of damage. This indicates that the changes in curvature mode shapes

are localized in the region of damage.

Difterence

Mode 5

Mode 4

sMode 3

Figure 2.7 Absolute differences between curvature mode shapes for the intact and

damaged (element 13 with 50% reduction in E) simply supported beam. [12]

Ratcliffe [13] also used a similar approach and applied a finite difference
approximation of Laplace’s differential operator [24] to the displacement mode shapes.
This operator, as given in Equation 2.39, was successfully applied to the numerical data
obtained from experimental and FE modeling of a free-free uniform beam.

Ly = ne1 = 2Yn tyna) equation 2.39
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Figure 2.8(a) shows the method being used for the first bending mode of finite
clement free-tree beam with 50% damage between nodes 7 and 8. This level of damage
is severe enough to cause a noticeable anomaly in the mode shape. However, with less
scvere damage, the Laplacian retained its characteristic shape, with less pronounced
effects. This is shown, for 5% damage to the same beam, in Figure 2.8(b). The
Laplacian had a similar shape and identifies damage in a similar fashion to the curvature
mode shapes in reference [12]. The main difference was that Pandey [12] considered the
difference in curvature between undamaged and damaged beams, whereas the Laplacian

only considered the damaged model.

-

/
N\
N

Laplacian
-

Laplacian
——

YA
| <

|
L
-

Figure 2.8 Laplacian for (a) 50% and (b) 5% [13]

In conclusion, curvature mode shape or the Laplacian method is a good indicator
for identifying damage location but only applicable when the damage is severe. The
mode shape data from the fundamental modes or lower modes are most suited to this
technique. However, data obtained from higher modes are less sensitive and are

particularly used to verify results from the fundamental modes.

2.3.5 MODAL ASSURANCE CRITERIA
Modal Assurance Criteria (MAC) [14] and Coordinate Modal Assurance Criteria

(COMAC) [15] are commonly used to compare the difference between two sets of
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vibration mode shapes. MAC indicates the correlation between two sets of mode shapes.
It is used to study overall differences in the mode shapes, while COMAC indicates the
correlation between the mode shapes at a selected measurement point of a structure and
is used to compare mode shapes in a point-wise manner [12,16].

Pandey [12] used MAC and COMAC values for the intact and damaged
displacement mode shapes to evaluate the state of health of a beam. The values of MAC
and COMAC from the uniform cantilever beam and simply supported beam did not
indicate any presence of damage by returning 100 percent compatibility. As concluded
in the study, MAC and COMAC are not sensitive enough to detect damage at its earlier
stages. The reason is that MAC is calculated based on the average differences over all
the measurement points whereas COMAC is calculated based on the average
differences over all the mode shapes [17].

Ndambi [38] carried out an investigation to evaluate the use of dynamic
techniques for damage detection in reinforced concrete (RC) beams. The 6m RC beams
were subjected to progressive cracking introduced at different load steps. The damaged
sections were located in symmetrical or asymmetrical positions according to the applied
load on the beams. A comparison of the set of measurements in damaged and
undamaged states of the beams allowed the sensitivity analysis of natural frequency,
MAC and COMAC to the crack damage in RC beams to be performed. Figure 2.9
shows the set up of symmetrical and asymmetrical loading configurations.

In the case of the symmetrical crack configuration, a decreasing tendency was
observed in the MAC factors for each considered eigenmode. This decrease expressed
the alteration of the RC beams by the decrease in the rigidity in certain zones of the
structure. However, the decrease was inconsistent and made the interpretation of the

obtained results more difficult. The inconsistent trend could be explained by the high
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sensitivity of the MAC factors to measurement errors. Figure 2.10 shows the MAC

factors as a function of the static symmetrical loading configuration.
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Figure 2.10 MAC for the symmetrical loading configuration [38]

The MAC factors in the case of the asymmetrical crack configuration decreased
in the first set-up configuration (case ‘a’ of the asymmetrical configuration). The
decrease was nearly consistent for each considered eigenmode indicating the alteration
in rigidity of the structure. For case b, the results was in contrast with increase of the

MAC factors as if the structure had been restored. From these results, it was concluded

27



Chapter 2 Literature Review

that the asymmetrical crack damage occurring in the RC beam caused a decrease of the
MAC factors expressing the asymmetrical alteration of the structure. Another
conclusion was that a symmetrical damage occurring in a structure has less influence on
the MAC factors than the asymmetrical one. Figure 2.11 shows the MAC factors for the

static asymmetrical loading configuration.
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Figure 2.11 MAC for the asymmetrical loading configuration [38]

According to Ndambi [38], eigenfrequncies and MAC factors can only indicate
whether damage exists. In practice, it is important to identify the damage location and to
resolve this problem. The use of mode shape derivatives providing information for
individual measurement points is adequate. The COMAC factor is a candidate for such
a parameter. Referring to Figure 2.12, the trend of the subtracted values of the COMAC
from unity (1-COMAC) for the symmetrical crack configuration shows a maximum
drop ranging from 0.8 % to 15 % on points 11 and 21 where the static loading was
applied. This was apparent in all the considered loading steps giving an indication of the
damaged sections along the beam. Figure 2.12 shows the 1-COMAC as a function of
measurement points for loading stage 1, stage 3, stage 5 and stage 6.

For the asymmetrical crack configuration, Figure 2.13 shows the 1-COMAC
values for the case ‘a’ of the asymmetrical static loading configuration. Three static
loading steps were presented as stla, st2a and st5a. The maximum drop of the COMAC

factor was of the order of 4.5 %, which was obtained after the final static loading step
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stSa. This drop was situated at loading point 11 indicating the damaged section of the
beam; on the other hand looking at Figure 2.14 corresponding to the case b, it was
difficult to detect the new damaged section. The drop in COMAC remained located in
the neighborhood of point 11. No indication was evident concerning the second
damaged section corresponding to loading point 21. Ndambi [38] concluded that it was
difficult to detect two different damaged sections in the same beam with different

severity of damage. Figure 2.14 shows the 1-COMAC for stage 1b, 2b, 5b. and 7b.
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Figure 2.12 1 - COMAC in loading stage 1, stage 3, stage 5 and stage 6 [38]
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Figure 2.13 1 - COMAC loading case

‘a’ for stage 1, stage 2 and stage 5 [38]
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24 MODEL UPDATING
The finite element (FE) model is commonly used in model updating technique.
The FE model usually consists of numerous design parameters and updating the design
parameters provides better correlation between FE analysis and experimental modal
analysis. Ewins [ 18] suggested three steps for updating the model as listed below.
1step:  To make a direct and objective comparison of specific dynamic properties,
measured versus predicted i.e. natural frequency and mode shape.
2step:  To quantify the extent of the differences or similarities between the two
sets of data i.e. MAC and COMAC.
3step:  To make adjustments or modifications to one or another set of results in
order to bring them closer into line with each other i.e least squares
technique.

In this section, only step 1 and step 2 will be discussed.

24.1 NATURAL FREQUENCIES COMPARISON

Natural frequencies comparison between measured and predicted is often done
by plotting experimental values against analytical values for all available modes or
selected modes, as shown in Figure 2.15. It presents not only the degree of correlation
between the two sets of results but also the nature of any discrepancies which exist [18].
The points obtained from the experimental and analytical results should lie on or close
to, a straight line with a slope of unity, for perfectly correlated data, as shown in Figure
2.15. If the points are widely scattered about the line then there is poor correlation
which is caused by some consistent error, for example, an erroneous material property

used in the model.
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Figure 2.15 Plots of measured versus predicted natural frequencies [18]

Using only measured and predicted natural frequencies to correlate the two sets
of data are not sufficient as there is no guarantee that measured modes correspond with
their predicted counterparts. Therefore some positive identification of each mode with
its counterpart is essential to provide a set of Correlated Mode Pairs (CMPs). The mode

shape correlation methods are discussed in the next section.

24.2 MODE SHAPES COMPARISON

Mode shapes are unique which represent the motion of one point relative to
another at resonance. Thus comparison of mode shapes should be made simultaneously
with natural frequencies to ensure that the correlated mode pairs are correctly matched.

Mode shapes can be compared either graphically or using numerical methods.

2.4.2.1 MODE SHAPES COMPARISON - GRAPHICAL

The most direct way to compare the mode shapes is by plotting the deformed
shape for each model, namely experimental and predicted, and overlaying one plot on
the other. Although this approach shows up differences, they are still difficult to
interpret and the resulting plots become very confusing when involving too much

information [18].
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A more convenient approach in a similar fashion is by plotting experimental
mode shapes against predicted ones, as shown in Figure 2.16. Perfectly correlated

modes should have points lying close to a straight line of slope 1.
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Figure 2.16 Plots of measured versus predicted mode shape vectors, (a) single mode; (b)

3 modes [18]

This approach can clearly interpret the cause of the discrepancy for two sets of
mode shape data. If the points lie close to a straight line of slope significantly different
from +1, then either one or other mode shape is not mass-normalised or there is some
other form of scaling error in the data. If the points are widely scattered about a line,
then there is considerable inaccuracy in one or other set. If the points are scattered
excesstvely, then it may be the case that the two eigenvectors whose elements are being

compared do not relate to the same mode.

2.4.2.2 MODE SHAPES COMPARISON - NUMERICAL
The Modal Scale Factor (MSF) is represented by the ‘slope’ of the best straight

line through the points as plotted in Figure 2.16. This quantity is defined as

> 0ud
MSF(X,4)=2——
Z_: ¢Aj ¢:1j

or expressed alternatively as
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2950y

MSF(A4,X)=+——
AT
J=1

Equation 2.40

However, the MSF gives no indication as to the quality of correlation by simply
computing its slope. Therefore Mode Shape Correlation Coefficient (MSCC) or more
popularly Modal Assurance Criterion (MAC) is used to provide a better indication of
correlation. MAC is a measurement of the least-squares deviation of the points from the
straight line correlation and defined as

D bty

j=!

(}ijqﬁm;j(imy;jj

MAC(A4,X) = Equation 2.41

The MAC value close to 1 suggests that the two modes are well correlated and a value
close to 0 indicates uncorrelated modes.

In the above calculation, MAC and MSF only indicate a correlation between two
sets of mode shapes but not that between the mode shapes at a selected measurement
point or node on the structure. The Coordinate Modal Assurance Criterion (COMAC)
proposed by Lieven and Ewins in 1988 [15] defined as

L 2
Z’¢Xi[¢.4ill
COMAC(4;, X)) =7 Equation 2.42

(2o 20

where / represents an individual correlated mode pair at i node and L is the total number

of correlated mode pairs. A COMAC value close to 1 indicates a good correlation at the
selected location between the two sets of data. On the other hand, a low COMAC value

indicates the discrepancies at that particular region.
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