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31 INTRODUCTION

Vibration or dynamic motion has a significant effect on elastic components such
as machines and structures. In today’s world, machines and structures are almost
everywhere. Therefore reliable vibration and dynamic analysis tools are a basic need to
measure the response of machines and structures when subject to external and internal
forces, which will cause deformations and overall motions. Modal analysis is one of the
tools which provides an understanding of structural characteristics, operating conditions
and performance criteria.

As an engineering tool, modal analysis is the process of characterizing the
dynamic properties of a structure in terms of its modal parameters, that is natural
frequency, mode shape and damping. Generally, the understanding of modal analysis
can be divided into two namely experimental modal analysis and analytical modal
analysis. Although both experimental and analytical approaches can be used to obtain
modal parameters, they differ totally in the process of characterizing dynamic

properties.

3.2 EXPERIMENTAL MODAL ANALYSIS

Experimental modal analysis is based on the use of experimentally determined
data which 1s obtained from modal testing [21]. Today, Transfer Function Method
(TFM) is commonly used as the basic of modal testing. This method involves the
acquisition of point to point frequency response functions (FRFs) at a set of points
defined as a dynamic model. The time data are collected and converted into the
frequency domain as frequency response functions in the Fast Fourier Transfer (FFT)

analyzer. In addition, different excitation techniques can be used in the estimation of
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frequency response functions. Modal parameter estimation methods are used to obtain

modal parameters of the structure from measured frequency response functions. Figure

3.1 1llustrates the process of a modal test.
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Figure 3.1 Modal test [20]
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3.2.1 FREQUENCY RESPONSE FUNCTION (FRF)

The frequency response function (FRF) is an inherent measurement in the modal
testing, which is defined as Fourier transform of the output (acceleration response)
divided by Fourier transform of the input (excitation force) [20]. The measurement of
mput excitation and output response is measured simultaneously, as shown in the block

diagram in Figure 3.2, to obtain the frequency response function.

Excitation H(w)
X(w) Y(o)

Response

A

X(w) — Fourier transform of the input
Y{w) — Fourier transform of the output

H(w) = %(w); - Frequency response function
1)

Figure 3.2 System block diagram [20]

In order to obtain good frequency response functions, the test setup and the
measurement acquisition process of modal testing are critical. It is important to
understand the purpose of the test and results that are expected during the test setup.
Knowledge of anticipated mode shapes and excitation techniques in a structure are also
required in order to define the test so that its frequency range, measurement points and
other relevant features can be identified. A proper test setup avoids obtaining poor
quality or unnecessary frequency response measurements, thus enabling the estimation
of modal parameters to be carried out more easily during the curve fitting process,
which will be discussed in Section 3.2.3.

The acquisition of measurement is a time-consuming process and careful
documentation is important during the test to help uncover problems. Basic

understanding of concepts associated with digital signal processing such as leakage,
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windows, time and frequency relationships, fast fourier transform, transfer function
formulation, excitation techniques are also important in assessing measurements all the
way through the measureming process. This knowledge helps the user to ensure quality

frequency response measurements.

3.2.2 EXCITATION TECHNIQUE

Impact testing is a common excitation technique available in modal testing. An
understanding of this excitation technique is important in order to carry out the modal
test successfully. Impact testing applies an impulsive excitation which is very short in
the time window usually lasting only less than 5% of the sample interval. The response
of the system is made up of the sum of exponentially decaying sine waves depending on
the number of modes excited. This technique requires very little hardware and provides
shorter measurement times but it is only suitable for testing a simple and linear structure
[22].

Generally, the understanding of functionality of the hammer tip, pre-trigger
delay and window functions is important to perform the impact testing. The former is
used to determine the frequency spectrum of the input force falling in the desired
frequency range. For a lower frequency response function, a softer tip should be used.
Pre-trigger delay is most effective to eliminate an incorrect input force spectrum due to
an input trigger from the hammer impact. Window is a weighting function that is
applied to a measured signal to minimize the effects of noise and leakage. The setup of

impact testing is detailed in Section 4.3.

3.2.3 MODAL PARAMETER ESTIMATION
Once a complete set of frequency response functions has been collected from a

structure, modal parameter estimation method namely “curve fitting” is performed to
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identify modal parameters. Figure 3.3 shows the fundamental concept of modal
parameters from frequency response functions. As shown in Figure 3.3, frequency and
damping of anv mode in a structure can be identified from any frequency response
function. Mode shape is assembled from the identified modal coefficients from each

measurement at the same modal frequency.

Measurement
Pairts

Damping, frequency — same at each measurement point
Wode shape — obtained at same frequency from all measurerment paints

Figure 3.3 Concept of modal parameters [21]

The identification of modal frequency is illustrated in Figure 3.4 which can be
identified by the following observations.

o The magnitude of the frequency response is a maximum.

e The imaginary part of the frequency response is a maximum or minimum.

o The real part of the frequency response is zero.

¢ The response lags the input by 90° phase.
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Figure 3.4 Frequency response [20]

The damping can be obtained by measuring the width of the modal peak between the
half-power points or at 70.7% of its peak value, as illustrated in Figure 3.5. This method
is known as half-power point method since 70.7% of the magnitude is the same as 50%
of the magnitude squared. Finally, the modal coefficient can be identified from the peak
value of the imaginary part of the frequency response, as illustrated in Figure 3.6.
Commonly, curve fitting method can be divided into single mode and multiple
mode methods. Single mode method involves only curve fitting a single mode form of a
modal resonance peak to identify the modal parameters. Multiple mode method on the
other hand involves curve fitting multiple mode forms of a frequency response function

to identify all the modal parameters simultaneously. The modal parameters obtained
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from the multiple mode method are comparative especially when closely spaced modes

occur.
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Figure 3.6 Modal coefficient [20]

3.3 ANALYTICAL MODAL ANALYSIS
Analytical modal analysis is based on the use of differential equations of motion of a
structure which are generated using theoretical and finite element (FE) modeling

technique. The resulting equations are then decomposed into eigenvalues (frequencies)

and eigenvectors (mode shapes).
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3.3.1 TRANSVERSE FREE VIBRATION OF A SIMPLE BEAM

The differential equations of motion of a long, thin beam undergoing transverse
free vibration may be derived using Newton’s second law. Figure 3.7(a) shows a portion
of beam in the X-Y plane undergoing transverse motion, which is assumed to be a plane
of symmetry for any cross section. Figure 3.7(b) shows the free body diagram of an
element of length dx with internal and inertial actions upon it. The symbol y represents
the transverse motion of a particular segment on the neutral axis of the beam. The

bending moment is M and the transverse shear force is V.
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Figure 3.7 Beam undergoing transverse free vibration [1]
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From kinematics the bending strain can be related to the curvature, 1/R, of the

beam by

Equation 3.1

where y is the distance in the cross section measured from the neutral axis and R is
radius of curvature. Then, for a linearly elastic beam whose properties are independent
of the position in the cross section, the bending moment can be related to the curvature

by

M = 3 Equation 3.2

where / 1s the moment of inertia of the cross section. If the slope, 8y/dx, of the beam
remains small, then the curvature can be approximated by 8y*/éx°, so Equation 3.2

becomes

82y

2

M =EI

Equation 3.3
Ox

When the beam is undergoing transverse free vibration, the dynamic equilibrium

condition for forces in y direction is

V-7 - e paan? ¥ =0 Equation 3.4
Ox ox
and the moment equilibrium condition is
2
v VB M g
x 2 ox
where the equation can be written as
—Vdx + (%M— dx ~ 0 Equation 3.5
X

by neglecting the higher order dx”.

Substitution of ¥ from equation 3.5 into Equation 3.4 produces

oO°M o’y
dx + pA =
ox* p or’

0 Equation 3.6
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and substitute M from Equation 3.3 into Equation 3.6, we obtain

ok 8%y 8%y :
—I EI + pA =0 Equation 3.7
ox’ ( ox’ ] £ or’ 1

which 1s the equation of motion for transverse free vibration of a beam. In the particular
case of a simple beam the flexural rigidity £7 does not vary with x, so Equation 3.7 can

be written as

4 2
0%y

o'y .
El +p4——=0 Equation 3.8
ox* P ot’ d

In harmonic motion, the deflection in y direction at any location varies harmonically
with time, as follows

y = Xcos(at —c) Equation 3.9
and substitute this into Equation 3.8 to get the fourth-order ordinary differential

equation

4

EIaX

4
X

+pAdw’X =0 Equation 3.10

As an aid in solving this equation, Equation 3.10 is reduced to

o* .
a)fwtﬂfX:O Equation 3.11
e
where
2
a=b ;{; Equation 3.12

To satisfy Equation 3.11, we let X = €™ and obtain
e (n* = 2*)=0 Equation 3.13
Thus, the values of n are found to be n; = A, n =1, n3 =jA, and ny = —jA, where j =
V—=1.The general form of the solution for Equation 3.13 becomes
X =Ce™ + De™ + Ee’™ + Fe /™ Equation 3.14a

which may also be written in the equivalent form
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X =C, sin Ax+ C, cos Ax + C, sinh Ax + C, cosh Ax Equation 3.14b

This expression represents a typical normal function for transverse free vibrations of a
simple beam.

The four amplitude constants C;, (., C; and C4, and the eigenvalue A are
determined in each particular case from the boundary conditions at the ends of the
beam. For example, the end conditions of simply support are

X=0 Equation 3.15a

(d*X/dx*) = 0 Equation 3.15b
and the end conditions of free-free are

(dX/dx) =0 Equation 3.16a

(d*x/dx?) = 0 Equation 3.16b
Utilization of the end restraint permits one to draw conclusions that lead to the

evaluation of the values of A and the corresponding mode shapes of the beam. With

known A’s, the natural frequencies o can be obtained from

w, =4 /E—/Il i=123....... o Equation 3.17
P

where i 1s the corresponding mode shapes.

3.3.2 FINITE ELEMENT MODELLING TECHNIQUE

The finite element modeling technique is a numerical analysis technique for
obtaining approximate solutions to a wide variety of engineering problems. Basically
finite element modeling subdivides a structure up into very small region called finite
elements where the displacement of the element is analytically obtainable. The selection
of element types is determined from the basic theory of elasticity and strength of
materials. Nodes are used to define each region of an element. All of the finite elements

are assembled intc one large model taking care of the balancing of forces and
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compatibility at each interface. Then boundary conditions are applied and this model
with a large set of simultaneous equations is solved using numerical procedures.

The knowledge or skills of defining nodes, elements, boundary conditions and
solving equations are needed in order to model correctly. Nodes are defined according
to the geometry of a structure, anticipated mode shapes and type of elements. Elements
are selected based on the type of characteristic deformations anticipated which gives
some ideas of mode shape patterns that are expected. Thus, the knowledge of expected
mode shapes is important for identifying the type of elements and node density.

The boundary conditions are defined in the model to reflect the appropriate
support conditions on a real structure. The physical restrain of the support needs to be
known so that the actual boundary conditions can be modelled. In order to perform a
correct analysis, types of solution schemes should be known which must adhere with the
required analysis. The detail of finite element modeling of beam 1is further discussed in

Chapter 4, Section 4.5.
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