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CHAPTER 5 RESULTS AND DISCUSSIONS

5.1 INTRODUCTION

This chapter presents the overall findings of the experimental modal analysis
and finite element (FE) study with the different boundary conditions. damage
identification and model validation. The boundary condition is a major factor which
influences the modal parameters. The natural frequencies, mode shapes and model
damping obtained from the experiment are studied in order to determine the effect of
boundary conditions. namely free-free (FF), spring support (SS) and fixed rolier (FR).
The modal paramecters obtained are correlated to the state of damage in the beam
induced by a saw cut at its soffit. The depth of the cut was increased so as to obtain the
different levels of severity of the damage. Changes in natural frequencies, curvature
mode shapes, modal assurance criterion (MAC) and coordinate modal assurance
criterion (COMAC) are used as damage indicators to evaluate and detect the crack
location. A new algorithm is also proposed to evaluate and detect the crack location for
the single and dual crack cases. Finally, the model validation between experimental

model and analytical model was performed by updating the FE model.

5.2  VALIDATION CHECK

In the process of modal testing, the measured frequency response functions
(FRFs) were acquired using a dynamic analyzer. The modal data such as natural
frequencies, mode shapes and modal damping were obtained by performing curve
fitting on a number of measured FRFs. The frequency domain parameter identification
technique in ICATS was utilised to estimate the modal parameters. The extracted

natural frequencies and mode shapes were used to evaluate the state of the structure and
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to predict the damage location in this study. Before using these modal data, a check was
done in order to ensure the quality and validity of the modal data.

In this investigation, reciprocal modal vector [23] in ICATS was utilised to
verify the modal data by comparing the measured FRFs (raw data) with the synthesized
FRFs obtained via modal summation. The orthogonality of the modal data with respect

to the corresponding measured FRFs was assessed using Equation 5.1

(@)}, 1a(@,)) , o ko), T ), = 8, 4“7 Equation 5.1

where

of @) 1s the receptance FRF at s excitation frequencies.

@yr 1s the mass normalized mode shape at mode 7 in the p-th column.

{x} 1s the reciprocal vector matrix.

w 1s the natural frequency.

The output of the reciprocal modal vector matrix should be close to unity indicating
good quality modal data.

Figure 5.1 shows the reciprocal modal vector matrices of the undamaged beam
for free-free, spring and roller support conditions. It was observed that the boundary
condition did affect the quality of modal data especially for the lower modes. The
diagonal values of the matrix drop from 1.0 to 0.5 for modes 2 and 4 as the support
conditions became stiffer. The reduction indicated the poor quality of modal data
obtained for the particular mode. Although some modes fell within the poor quality

range, the overall results, especially the higher modes were still exhibiting reasonable

quality and acceptable modal data for further investigation.
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Figure 5.1 Reciprocal modal vector matrix for different boundary condition

5.3 BOUNDARY CONDITIONS EFFECT
According to Timoshenko [1], a typical normal function for transverse free
vibration of a simple beam can be written as

X =C,sinAx + C, cos Ax + C, sinh Ax + C, cosh Ax Equation 5.2

where the four amplitude constants C,, C;, C; and C4, and the eigenvalue A are
determined in each particular case from the boundary conditions at the ends of the
beam. Based on the above typical function, the modal properties i.e natural frequencies,

mode shapes and damping, will change when there is change in boundary conditions.

5.3.1 NATURAL FREQUENCY

In general, the stiffer the support condition, the higher will be the natural
frequency, when all other physical properties remained unchanged. However,
Chowdhury [6] found that the stiffer the support condition, the lower will be the natural
frequency, especially for the lower modes. Similarly, the results of this investigation
confirmed this trend. Furthermore, it was proven by Timoshenko [1] that the frequency
of flexural mode for free-free beam is higher than simply supported beam as given in
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Equation 2.15 and 2.8 respectively. Tables 5.1a and 5.1b present the changes in natural

frequencies for the first six flexural modes and the first five torsional modes. It was

apparent that the changes in natural frequencies for the first two flexural modes were

significant as the boundary conditions became stiffer. The natural frequencies of the

flexural modes 1 and 2 for the free-free end conditions were 83.66Hz and 230.13Hz

respectively. It subsequently reduced to 64.39Hz and 187.38Hz for the spring supports

and 31.02Hz and 133.12Hz for the fixed roller supports, respectively. However, the

change in boundary condition had an insignificant effect on the natural frequencies for

the higher modes which exhibited a slight increase in the values.

FF | i FR
Boundary conditions Degree of support stiffness
(Increase)
Change in Change in
Frequency | Frequency freq. (%) Frequency freq. (%)
83.66 64.39 -23.03 31.02 -62.92
Natural frequencies 230.13 187.38 -18.57 133.12 -42.15
of undamaged beams | 451.38 488.90 8.31 489.74 8.50
746.25 760.98 1.97 763.13 2.26
1113.29 1125.83 1.13 1122.99 0.87
| 1549.05 1555.24 0.40 1555.99 0.45
Table 5.1a Natural frequencies for flexural modes
FF | SS | FR
Boundary conditions Degree of support stiffness
(Increase)
Change in [ I Change in
Frequency | Frequency freq. (%) Frequency freq. (%)
Natural frequencies 350.61 383.36 9.34 379.65 8.28
P e [ 70876 | 72691 2.56 726.61 252
£ 1085.66 1099.07 1.24 1098.96 1.23
1485.70 1497.36 0.78 1497.59 0.80
1917.44 1925.16 0.40 1925.40 0.41

(+ve is increasing and —ve is reduction)

Table 5.1b Natural frequencies for torsional modes
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5.3.2 MODE SHAPE

Mode shapes are associated with structural resonance. They change with the

physical properties or boundary conditions of the structure [11]. Figures 5.2 and 5.3
show the vanation of the mode shapes amplitude for the flexural modes and torsional
modes for different support conditions. In these figures the imaginary parts of the FRF
(residues) obtained from the curve fitting were piotted to obtain deflected shape of the
beam. These imaginary parts are proportional to the deflection of the test object and can
be used to detect the variation in the amplitude due to different support conditions.

The amplitude of flexural and torsional modes in the free-free, spring and fixed
roller support obtained from model testing are summarized in Figure 5.2 and Figure 5.3.
Theoretically, the amplitudes at the edges for the roller support should be zero.
However, the amplitude of fixed roller beam is not equal to zero. This is due to the fixed
roller support, as shown in Figure 4.1, is not fully constraint in vertical direction and it
consists space for the upward movement.

Referring to Figure 5.2, it was apparent that the stiffer the support, the smalier
the amplitude of vibration, especially for the lower modes. This phenomenon can be
explained by the freedom of movement of the beam under different support media. In
the case of free-free condition, the beam has more space to move while in the case of
stiffer support, like a steel roller, the movement of the beam is restricted by the end of
the support. As a result, higher amplitudes of vibration were observed in the free-free
beam. Subsequently the amplitude reduced from the free-free condition to spring
support and was even less in the fixed roller support. This indicated that the degree of
freedom of the beam is inversely proportional to the support stiffness.

A similar result was also reported by Chowdhury [6]. The author had carried out

modal testing on an aluminum plate with different boundary conditions. The aluminum
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plate was laid over four independent supports: free-free, sand, concrete and steel. It was

observed that the less stiffer the support material the higher the mode shape amplitude.

For flexural modes higher than the third, the change in boundary condition did

not significantly affect the amplitude which exhibited a slight reduction or remained

unchanged. Similar results were also obtained for the torsional modes where the

amplitude of other two support conditions were as close as that of the free-free

condition.
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Figure 5.2 Amplitude of mode shapes for flexural modes
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5.3.3 DAMPING RATIO

Damping exists in all vibratory systems whenever there is energy dissipation.
This is true for mechanical structures even though inherently most are hightly damped.
In case of free vibration, the loss of energy from damping in the system results in the
decay of the amplitude of motion. As for cases of forced vibration, loss of energy is
balanced by the energy supplied by excitation. In either situation, the effect of damping
is to remove energy from the system. The variations of the damping ratio of flexural
modes and torsional modes due to changes in boundary conditions are illustrated in
Figure 5.4.

Basically, the ratios shown in Figure 5.4 represent the damping characteristic of
the test beams which are associated with energy dissipation or energy loss within the
system. Theoretically without other changes except the boundary condition, if the beam
has a low stiffness support condition, the tendency is for lower energy to be imparted by
the excitation force. This would be sufficient to balance the energy dissipation of the
low stiffness of the support. Correspondingly, a higher energy is needed for high
support stiffness to balance the higher energy dissipation within the system.
Consequently, it is expected that the trend for the damping ratio obtained should
increase as the boundary condition gets stiffer.

Referring to Figure 5.4a, a consistent trend in the damping ratios was observed
for the flexural modes due to changes in boundary condition. It was apparent that the
damping ratios increased when the boundary condition changed from free-free to spring
to fixed roller support, with the exception of modes 1 and 5. The damping ratios of
modes 1 and 5 were 1.1%, 0.8% and 6.79% and 0.11%, 0.55% and 0.38% respectively
for the free-free, spring and fixed roller support conditions. However for torsional
modes, differences in the damping ratios were only significant in mode 1 while other

modes exhibited only a slight change in value. This can be probably due to the fact that
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the torsional mode is less sensitive compared to the flexural mode when there are
changes in boundary conditions. Moreover, for higher modes, damping ratios were less

affected by the stiffness of the boundary conditions.
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Figure 5.4 Damping ratio for different boundary conditions
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54 DAMAGE IDENTIFICATION

When a system is subjected to a certain degree of damage or deterioration, it
experiences a change on the physical properties namely the mass, damping and in
particular the stiffness of the structure. The basic idea underlying damage identification
using modal parameters such as natural frequencies, mode shapes and modal damping
are that they are functions of the physical properties of the structure. Consequently, the
changes in physical properties will cause changes in modal properties. Thus, the
investigation on modal analysis was carried out to observe the change which was related
to the damage induced by a saw cut to simulate an open crack at the soffit of the steel

beam as shown in Figure 5.5.

4
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Figure 5.5 Crack location on the steel beam

The modal damping based damage identification technique is not discussed due
to the inconsistencies in the results and inaccuracy in its measurement. According to
Salawu [16] and Kato [32], the inconsistency of changes in damping ratios was obtained
due to measurement error introduced by background noise as well as by the interference
of the measuring equipment. In addition, the damping ratio is estimated from the half-
power bandwidth of the frequency spectra after undergoing the curve fitting process.
Thus, the original signal is modified and coupled with the curve fitting process, a less

accurate estimation of the damping ratio is acquired.

5.4.1 FREQUENCY CHANGES
The natural frequency of a structure bears a direct relationship with the
structural stiffness. For an undamped vibrating system with mass m, the relationship

can be written as
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W, < 24 Equation 5.2

where EI is the stiffness in the structure and @; 1s the angular frequency for mode i.
Based on Equation 5.2, reduction in stiffness (£]) of a structure leads to reduction in
natural frequencies for the corresponding modes. Thus the natural frequency of a
vibrating system is a useful global parameter to indicate the occurrence of damage and
to evaluate the severity or state of damage in the structure.

The changes in natural frequencies are also dependant on the nature and severity
of the damage; in particular it’s location. As stated in the literature review of Salawu
[4], the degree of reduction in natural frequency is dependent on the position of the
defect relative to the mode shape for a particular mode of vibration. The reduction
becomes more important when the crack is located at the high curvature region for the
modes under consideration. The reduction of any modes is also proportional to the
square of the modal strain value [5]. In other words, the reduction in frequency is
maximum if the crack is located at the peak or trough of the strain mode and minimum
if the crack is located at the node of the strain mode. Therefore, natural frequency
changes are not only to monitor structural conditions but also useful to identify the

damage location.

5.4.1.1 SEVERITY CHECK

The natural frequencies of flexural and torsional modes in the free-free, spring
and simply support conditions obtained from modal testing are summarized in Tables
5.2 and 5.3. The frequencies of flexural mode 6 B6 and torsional mode 4 T4 at 0.5h cut
damage level were omitted due to identification problems for the closely spaced
between the two modes. This is due to the smaller impact of the damage on the T4 than

that on the B6, which causes the changes in sequence between T4 and B6 during the
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damaging process. The flexural mode 2 for case 0.61h cut in the fixed roller support
condition was not obtainable, probably due to the distortion caused by a rigid body

mode and noise.

The relative drop of natural frequencies with respect to the control state or
undamaged state is illustrated in Tables 5.2 and 5.3. It was observed that the natural
frequencies of the beam experienced reductions for all the boundary conditions when
cracking was induced. It was also apparent that the higher the degree of the damage, the
higher the drop in natural frequency. However, for lower modes of the spring and fixed
roller support conditions the trend of change in natural frequencies was inconsistent
when the damage induced was small. The inconsistent trend can be explained since the
change in natural frequencies was more affected by support stiffer rather the damage

induced.

By comparing the percentage drop in natural frequencies, the flexural modes
were higher than the torsional modes. In the case of the 0.67h cut, the average
percentage drop in natural frequencies for the flexural modes in free-free, spring and
fixed roller support conditions were 6.81%, 5.92% and 4.89% respectively, but for the
torsional modes the corresponding averages were only 1.2%, 1.25% and 1.35%. This
indicated that flexural modes were more sensitive compared to the torsional modes in

detecting crack damage in the beam.

From the case of 0.17h cut to 0.5h cut, the percentage drop in flexural
frequencies was rather small for all the boundary conditions. However, at 0.61h cut the
second and third flexural frequencies decreased much more dramatically. This may be
explained by the formation of a plastic hinge at the crack location, which causes a
higher drop in flexural frequencies. A similar trend was also reported in a study by Wen
[27]. The author carried out vibration measurements on a reinforced concrete beam
where the cracking was induced by a series of step load tests. The drop in flexural
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frequencies was small from the second load step to the fifth. At the ultimate damage
state (the sixth or last load step), the drop in first flexural frequencies was dramatically

much more than the previous state because of the formation of a plastic hinge.

In addition, the stiffness of the boundary condition also affects the drop in
natural frequencies due to the damage in the structure. For the same level of damage
that is the 0.67h cut, the percentage drop in natural frequencies of flexural mode 1 for
the free-free, spring and fixed roller support conditions were 6.88%, 4.95% and 3.56%
respectively, while for the flexural mode 2 they were 13.56%, 11.76% and 3.62%
respectively. The percentage drop in natural frequencie.s reduced as the support stiffness
increased which implied a decrease in sensitivity for damage detection. A similar trend

was also observed for the less severe damage cases of the 0.39h mm cut, 0.5h cut and

0.61h cut.

5.4.1.2 DAMAGE LOCATION

As mentioned earlier in section 5.4.1.1, the percentage drop in natural
frequencies of the torsional modes was not as sensitive as the flexural modes. Hence,
only the flexural modes were chosen as an indicator to identify the damage location in
the beam using the changes in natural frequencies. Figure 5.6 shows the percentage drop
in natural frequencies of the different damage levels for the free-free, spring and fixed
roller support conditions. The negative values presented in the graphs were ignored
since the natural frequency is inversely proportional to stiffness of the structure, as
shown i Equation 5.2. It was noticed that the changes in natural frequencies was
different for every mode for all the boundary conditions at every damage level. It was

therefore inferred that the percentage drop in natural frequencies was also a function of

the crack location.
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Referring to Figure 5.6, particular modes always returned the minimum and
maximum percentage drop in natural frequencies, as the damage level increased. This
consistent trend was noticeable when the cut damage was 0.17h for free-free. For spring
and fixed roller support conditions, the trend was also noticeable when the cut damage
was 0.28h. For all the boundary conditions, mode 4 returned the minimum percentage
drop while different modes returned the maximum percentage drop. For free-free and
spring support conditions mode 2 returned the maximum percentage drop while for the
fixed roller support it was mode 3. This shift was influenced by the support stiffness.
The stiffer support of the fixed roller support condition reduced the sensitivity of
percentage drop in natural frequency for the first two modes due to the damage, as
mentioned earlier in Section 5.4.1.1.

According to Narayana [5], the frequency change is proportional to the square of
the modal strain. The modal strain or bending strain is also directly related to the
curvature as given by

€E=yv Equation 5.3
where € i1s strain, v"' is curvature mode shape and y is distance from the neutral axis.
This suggests that the possible crack location of free-free and spring supports was
located at the high curvature zone of mode 2 and the low curvature zone of mode 4. In
other words, the crack location can be estimated at location near to the 0.28L, as shown
in Figures 5.7a and 5.7b. For fixed roller support condition, the possible crack location
was located either close to 0.28L or 0.5L which was the location of high curvature for
mode 3 and the low curvature for mode 4, as shown in Figures 5.7c. The 0.5L was not
possible crack location because the percentage drop for the sixth flexural frequency was
high although the curvature was low. Thus the damaged detection based on the

percentage drop related to the curvature gave close approximation of the crack location

which was located at 0.25L.
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The high sensitivity of changes in natural frequencies due to the damage made it
suitable to be used as a damage indicator. Moreover, changes in natural frequencies are
also applicable for the less severe case where it can detect the damage location up to
0.17h cut for the free-free condition and 0.28h cut for the spring and fixed rolier support
conditions. However, the symmetry of the beam provided symmetrical mode shapes

with two possible damage locations can be obtained either at 0.28L or 0.72L.
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Figure 5.7 Curvature mode Shapes for (a) free-free, (b) spring support and (c) fixed

roller

5.4.2 MODE SHAPE CHANGES

Mode shapes express the oscillation of an undamped single degree of freedom
(SDOF) system when it is subjected to an initial perturbation. Subsequently when it is
left to move freely, the system will oscillate about the static equilibrium position. This
is referred to as its natural modes of vibration. Mathematically speaking, the mode
shape of a dynamic system is characterized through a unique property described by its
free vibration natural frequency.

For this mvestigation, the first six flexural mode shapes of the free-free beam at
different levels of damage are shown in Figure 5.8. It was apparent that the crack at the
quarter span did influence the mode shape behavior. A clear trend can still be seen due
to the damage level in Figure 5.8. The nodes were shifted slightly towards the damage
zone and the relative mode amplitudes were changed at the damage location. When the
cut was greater than 0.61h, the changes in mode shapes were clearly noticeable in
modes 5 and 6 as compared with the control. The nodes shifted significantly towards the
damage zone. However, not only at the damage location, displacements in mode shapes

and changes in relative amplitude were noticeable not only at the damage location but
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also along the length of the beam. This indicated that the formation of a plastic hinge
significantly affected the mode shape, especially for the higher modes.

As the support stiffness of the beam increased, the mode shape was affected not
only by the damage induced but also by the stiffness of the supports. Figure 5.9 shows
the plot of the first two flexural modes at different levels of damage for free-free, spring
and fixed roller support for purpose of comparison. Other modes were omitted since the
support conditions had less significant effect on the higher modes, as mentioned in
section 5.3.2 and their results were similar to the free-free condition.

Referring to Figure 5.9, the mode shapes of the spring and fixed roller support
did not present a clear trend as compared with the free-free. For spring and fixed roller
support, the displacement in mode shape and changes in relative amplitude were
inconsistent due to the damage level. It was also observed that the changes occurred
along the length of the beam although it was not the effect of formation of a plastic
hinge. Therefore, it was inferred that the support condition did influence the mode shape
and its effect was more dominant than the damage induced when stiffer support
condition was encountered.

Based on above results, the changes in mode shape indicated the occurrence of
damage but it did not give any clear indication of the damage location. In a study by
Narayana [5], the analytical results presented insignificant amplitude increases at the
crack location due to damage of up to 50% reduction in beam depth. As a result, the
above trend and amplitude changes at the crack location were not applicable to detect
and locate the damage in the structure. Moreover the stiffer the support condition in the

structure, the less smooth the mode shape obtained.
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5.4.3 CURVATURE MODE SHAPE

Curvature mode shapes are related to the flexural stiffness of a beam [12].

Curvature at a point is given by
k = M/(E]) Equation 5.4

in which « is the curvature of the section. M is the bending moment at the section. £/ is
the stiffness of the structure. If a crack or damage occurs in the structure, it reduces the
bending stiffness (£7) of the structure at the crack section or in the damaged region,
which increases the magnitude of the curvature at that section of the structure. As
changes in curvatures are local in nature, they can be used to detect and locate a crack or
damage in the structure. Theoretically, the magnitude of changes in curvatures is
inversely proportion to the value of EI. Therefore, the state of damage can be obtained

from the magnitude of change in curvature.

Ratcliffe [13] successfully developed a technique to detect or identify the
location of damage in a beam. When a beam is subjected to localized damage, the mode
shape changes and there is also a localized change in curvature mode shape. In modal
analysis, the mode shape data are discrete in space, and therefore the changes in slope
can be estimated using a central difference approximate on the discrete mode shape.
Accordingly, the Laplacian difference equation function is applied to a one-dimensional

beam in the following form,
Ly = Gis1 T Yn1) = 2¥n Equation 5.5
L, — one dimensional Laplacian
yn — discrete mode shape

The curvature mode shapes using Laplacian equation for the first three flexural
modes of the free-free beam with different levels of damage between nodes 7 and 8 are

illustrated in Figure 5.10. For mode 1, eventhough the Laplacian exhibited anomalies at
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nodes 7 and 8 however other anomalies were also noticeable along the beam. Due to the
low complexity of the displacement mode shape for mode 1, the length of the damaged
region is relatively short in comparison to the distance between nodes and would not
influence the mode shape significantly [28]. Moreover, the existing anomalies can be
contributed by the rigid body mode which possibly affected the mode shape data,

especially the first flexural mode.

For higher modes such as, in the case of modes 2 and 3, the mode shapes
became more complex comprising of more nodes along each flexuring span with each
of them far from the influence of the rigid body mode. Consequently, the aspect ratio
between the length of damage zone and the distance between nodes would be higher.
Hence, the local change in structural stiffness occurring within the damaged zone would

affect the mode shape more significantly.

When the cut was greater than 0.5h or 50% damage induced, modes 2 and 3
showed a distinct anomaly at nodes 7 and 8 where the damage was located. It was
apparent that the anomaly was sufficient to indicate the damage location without any
prior knowledge of a modal test on an undamaged beam. By comparing the undamaged
curvature, it was noticed that the higher the degree of the damage, the higher was the
change in its curvature. This indicated that the curvature was inversely proportional to
the value of structural stiffness and the state of the structure can possibly be estimated

from the changes in magnitude in the curvature.

Referring to Figure 5.11, the higher modes were less sensitive to the Laplacian
equation where no anomaly was noticeable at the damaged location compared with
lower modes when the cut damage was 0.5h. When the cut was 0.61h, the anomaly for
the higher modes was not as distinct as that of the lower modes. It was difficult to notice
the anomaly at the damage location for the higher modes without comparing it with the

undamaged curvature. This indicated that the higher modes were less sensitive and not
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applicable for identifying the damage location. However, the higher modes in particular

can be used to verify the results from the lower modes.
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Figure 5.10 Curvature mode shape of free-free beam for first three flexural modes
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Based on previous studies, the experimental curvature mode shape or Laplacian
equation was applied to the eigenvector of the free-free beam only [13]. Difficulty to
obtain an accurate eigenvector for other boundary conditions was a reason for not using
mode shape data as a damage indicator. In this investigation, the curvature mode shapes
for the first three flexural modes of the spring and fixed roller supported beams were
plotted in Figures 5.12 and 5.13. The curvatures of modes 2 and 3 although presented
anomalies at nodes 7 and 8, they were not distinct as other anomalies were also
noticeable and they occurred rather arbitrarily at positions other than the damage
location. This indicated that as the stiffness of the support condition increased, the mode
shape curvatures were affected not only by the damage induced but also by some other

factors, especially for the lower modes.

As the mode increased, the mode shape was less affected by the boundary
condition, as mentioned in section 5.3.2. In other words, the damage induced became
the main source causing the changes in mode shape curvature. However as mentioned
earlier, the higher modes were less sensitive and not viable enough as damage indicator
by using the Laplacian equation. Thus, it can be deduced that the Laplacian equation as
proposed by Ratcliffe was only applicable when the level of damage was fairly severe in
the beam with free-free boundary condition for damage location detection. However, it
was insufficient for detecting local change in structural stiffness when stiffer boundary
conditions were encountered, and thus becomes necessary to use other forms of

algorithm.
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54.4 COMBINED METHOD
Considering that the Laplacian equation dealt with the deviation of the function
value y, from the arithmetic mean of the neighboring values, its value can thus fluctuate
from positive to negative, which makes the detection not sensitive, especially for the
higher modes as shown in section 5.4.3. In order to overcome this problem, the
geometric mean operator (GMQO) is proposed to the value of Laplacian. In the
mathematical terms, the geometric mean (Gm) is defined as:
Gm=L, =L, ,xL

Equation 5.6

n+l
By modifying the geometric mean, the GMO can be Writtén as
GMO=L, -,/L, xL Equation 5.7

ntl
or in another form which is

GMO =(L} - (L,,xL,.)))’ Equation 5.8
where L is the value of the Laplacian at the point, ».

The square is chosen instead of the square root for more efficient calculation of
this operator since it deals with the deviation value L, from the geometric mean of the
neighboring values. This operator ensures that the deviation of L, from the neighboring
values is always positive and it will be magnified when there is a deviation due to the
change in curvature mode shape. By substituting the value of the Laplacian into
Equation 5.8, it is possible to increase the sensitivity of damage detection because of the
increasing deviation at the damage location, especially for the higher modes.

For this investigation, the combined method using GMO and Laplacian for free-
free, spring and fixed roller support conditions were plotted as illustrated in Figures
5.14, 5.15 and 5.16 for the purpose of comparison. As shown in Section 5.4.3, the
support stiffness had less effect on the higher modes but they were less sensitive to the
Laplacian equation. So by using the higher modes that is modes 4, 5 and 6, the
difference between the Laplacian and the combined method can be clearly noticed.
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Referring to Figures 5.14, 5.15 and 5.16, the combined method of all the
boundary conditions showed a distinct anomaly at nodes 7 and 8 where the damage is
located. Although some anomalies were also noticeable in modes 4 and 5, they were not
as distinct as before, in the case of the Laplacian. By comparison, the anomaly for the
combined method is clearly noticeable and more distinct than the Laplacian.

In Figure 5.16, mode 6 showed the distinct anomaly at the damage location
when the cut was greater than 0.3%h. However for the Laplacian, the anomaly at the
damage location was only noticeable when the cut was greater than 0.5h as given in
Section 5.4.3. Thus it can be deduced that the combined method as proposed is more
applicable and sensitive in detecting the damage location than the Laplacian. It is
applicable not only for the free-free beam but also for beams with other boundary

conditions.

5.4.5 MODAL ASSURANCE CRITERION (MAC)

Modal assurance criterion (MAC) is a technique used to indicate the correlation
between two sets of mode shape data using an orthogonality check on the eigenvectors.
It is used to study overall differences in the mode shapes. If changes occur in a test
structure, there would be modifications to the mode shapes. Thus, the mode shapes
before and after the system experience changes are incompatible and their eigenvectors

are not perfectly correlated.
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The MAC between the gth mode of the first data set A and the rth mode of the
second data set B is defined by Allemang and Brown [29] as shown in Equation 5.8.
This technique is available to compare two sets of measured data, theoretical versus
measured data or two sets of theoretical vibration data. The MAC value indicates the
degree of correlation between the two sets of mode shapes. It is therefore possible to
infer that the system has experienced changes to its global dynamic parameters. A MAC

value close to unity indicates good correlation, while a value close to zero indicates no

correlation.
607 @, |
MAC({4,},-is},) = —— _ Equation 5.8
e ) ) = g T 6.3 () 803) e
in which {0a}q = mode shape vector for mode q of data set A

{op}: = mode shape vector for mode r of data set B

Figure 5.17 shows the trend in the MAC values as function of the damage level
induced by a saw cut at the soffit of the beam for all the boundary conditions. The real
values of the eigenvectors from the first six flexural mode shape data were used to
calculate MAC using Equation 5.8. Referring to Figure 5.17, on average the MAC
values remained above 0.95 when the cut damage was less than 0.5h for all the
boundary conditions. When the cut was greater than 0.61h, only the higher modes,
namely modes 5 and 6 exhibited significant drop in MAC values compared to the 0.5h
cut. The formation of a plastic hinge significantly affected the mode shape which caused
the drop in MAC values.

According to a study conducted by Choi [30], the bending modes of undamaged
beams gave MAC values higher than 0.95. Therefore, it was suggested a value of 0.9 for
the MAC as an appropriate threshold to indicate changes to the mode shape which were
caused by damage induced in the system. This suggested threshold value was to take
into consideration human errors and noise during data acquisition, other inaccuracies
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during the analysis process, as well as variation between test beams. From this study,
the MAC values obtained from the experiment was not sensitive enough to detect any
damage in the earlier stages, when the cut was less than 0.5h. This was because the cut
was local and affected the eigenvectors near the damage area. However, the MAC value
was calculated based on averaging the entire measured eigenvectors, which
overshadowed the effect of the damage.

In contrast to the results on natural frequencies as presented earlier in Section
5.4.1, the trends of the MAC values were not consistent. Generally the decreases in
MAC values are due to the reduction of the bending stiffness in the beam. However,
certain modes presented inconsistent trend when the cut depth was increased as shown
in Figure 5.17. The inconsistent trend can be explained by the high sensitivity of the
MAC values towards measurement errors [38]. The measurement errors occurring at
certain points may significantly influence the MAC values, even though the
displacement mode shapes remain the same at other points. This therefore indicated the
difficulty of using MAC to evaluate the state of health of a structure.

Based on the above observation, the MAC is not a good damage indicator
compared with the drop in natural frequency. The MAC values remained above 0.95
when the cut was less than 0.5h and below 0.9 when the cut was greater than 0.61h,
especially for the higher modes. Besides that, the drop in MAC was inconsistent due to
the severity of damage. In conclusion, MAC can only indicate the occurrence of severe

damage and not suitable to evaluate the overall state of health of a structure.
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5.4.6 COORDINATE MODAL ASSURANCE CRITERION (COMAC)

Coordinate modal assurance criterion (COMAC) is a technique used to indicate
the correlation between the mode shapes at a selected measurement point of a structure.
It is used to study the differences at every location over the entire mode shape. If local
changes occur in a test structure, there would be a modification to the mode shapes.
Thus, the displacement mode shapes before and after the system is subjected to damage,
experience incompatibilities.

The COMAC for measurement location i is defined by Lieven and Edwins [15]
as shown in Equation 5.9. This technique can possibly be use to infer damage locations
on the test structure. A COMAC value indicates the degree of correlation at the selected
location between the two sets of data. A value close to unity indicates good correlation,

and correspondingly a value close to zero indicates no correlation.

> G806

COMAC») = Equation 5.9
2801 2.G85)i
where i = measurement location
L = total number of correlated mode pairs

(i9a); = element of mode shape vector for set A in correlated mode pair /
(i95);= element of mode shape vector for set B in correlated mode pair /

for which the summation is from /=1 to L.

Figure 5.18 shows the values of subtracting the COMAC value from unity (1-
COMAC). The (1-COMAC) values were obtained with varying levels of damage for the
beam for all the boundary conditions. The real values from the bending modes were
used to calculate the COMAC using Equation 5.9. Although the cut was increased to
0.5h or 50% of damage induced, the (1-COMAC) values remained below 0.05 except
the locations near to the support. This indicated that the COMAC is not sensitive to

detect the damage at the earlier stage.
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When the cut was greater than 0.61h, the drop in COMAC values was distinct,
which was over 10% at the damage location for all the boundary conditions. However,
the drop not only occurred at the damage location, but also noticeable at other locations.
Thus, this showed that the formation of a plastic hinge not only significantly affected
the displacement mode shape at the damage location but also affected the other
displacement mode shapes. Based on the above result, COMAC is not applicable to
indicate the damage location. The drop in COMAC values remained below 5% for low
levels of damage. Under more severe condition with the formation of a plastic hinge, the

changes m displacement mode shape were global in nature which affected the overall

COMAC values.

1-COMAC

0.000 =gy A ANRANANRRAS
T A R 7,
R

=

Crack location

(a) Free-Free

98



Chapter 5 Result and Discussions

0.250-

0.200
g
= 0,150
8 AW R
T 0100 Ao
- PR -

AL
0.050+ S
ity
\\\\\\\\\\\\\\\\\\
SRS AR LERRRR RN LAY
5 — SRR AN ARRSREN
6 NN
57 061h
. Locations
Crack location ~ 0.30n  Depth of cut
27
(b) Spring Support

Q
<
=
[+
(3]

0.61h
Depth of cut

Crack location

(c) Fixed Roller

Figure 5.18 (1-COMAC) values as function of damage level for (a) free-free, (b) spring

and (c) fixed roller support conditions

99



Chapter 5 Result and Discussions

5.5 DUAL CRACKS

As discussed in Section 5.4, the damage identification techniques were applied
to the single crack case. Looking at it practically, the number of cracks present in a
structure is usually more than one. As such in this investigation, two saw cuts were
introduced at quarter span and mid span points to simulate multiple open cracks at the
soffit of the beam. The changes in natural frequencies and the combined method were
used to evaluate and detect the crack locations.

Comparisons of percentage drop in natural frequencies between single crack and
dual cracks for all the boundary conditions are summarized in Table 5.4. The missing
frequencies of the flexural modes in Table 5.4 were due to the identification problems
as a result of closely spaced flexural and torsional modes. This was due to the smaller
effect of the damage on the torsional mode compared to the flexural mode, which
caused the changes in sequence between torsional mode and flexural mode during the
damaging process.

As mentioned earlier, the drop in natural frequencies is a function of the damage
location. Referring to Table 5.4, it was observed that the second crack induced in the
mid span significantly affected the odd modes only. By comparison, the percentage drop
in natural frequencies for the odd modes greatly increased compared with the even
modes. This indicated that the percentage drop in natural frequencies is a function of the
damage locations even though more than one crack occurred in the beam.

As cracks existed at two positions in the structure, the problem of crack size and
location becomes more complex and a mathematical model is required. Shifrin [31]
successfully used the natural frequencies of a cracked beam to evaluate and detect the
damage location by using the mass less rotational spring concept. However using the
changes in natural frequency technique indicates one possible crack location as shown

in Section 5.4.1.2. It does not provide any information on the number of cracks in the
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beam. But the minimum percentage drop in natural frequency gives an indication that
the cracks are located at the low curvature areas for a particular mode. Refernng to
Table 5.4, mode 4 gave the minimum percentage drop, which indicated that the cracks
were probably located at 0.0L, 0.28L and 0.SL. Thus it provided some possible
indication of the damage location which could be used with other techniques of damage
identification.

Since changes in curvature mode shapes are local in nature, cracks occurring in
the beam can be identified by the curvature or the combined method. Figure 5.19 shows
the plots of mode 5 and mode 6 for all the boundary conditions using the combined
method. These two modes were selected because the boundary condition did not
significantly affect the displacement mode shape and the change was dominated by the
damage induced. Moreover, two modes were sufficient to evaluate and detect the crack
locations by using the combined method. The missing modes in these figures were due
to the identification problem as a result of closely spaced flexural and torsional modes
as mentioned earlier.

Referring to Figure 5.19, the combined method showed distinct anomalies at
nodes 7 and 8 and node 14 where the cracks were located. However, these two distinct
anomalies were not noticeable in the same mode, which appeared separately in the two
modes. Mode 5 presented the anomaly at node 14 while mode 6 presented the anomaly
at nodes 7 and 8. The distinct anomalies in mode 5 and 6 were due to the magnitude of
change in mode shape curvature. As cracks were located at the high curvature zones, the
changes in magnitude in curvature mode shape were higher compared to the changes for
the crack located at low curvature zone. Although the anomalies were presented in
every mode, it was dominated by the crack at the high curvature zone. Hence, the
combination of the two modes can still successfully indicate the number of cracks and

the crack locations.
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double cracks
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In conclusion, the combined method is not only applicable for the single crack
case but also applicable for the dual crack case. By using the higher modes, the
combined method was able to detect local changes in structural stiffness although
problems with the stiffer boundary conditions were encountered. The other modes can
also be use to verify the results. Moreover by combining the information of changes in
natural frequencies, it was evident that nodes 7 and 8 and node 14 were the exact crack

locations for the beam.

Mode 5 _ Mode 6
. om}:‘akf e Lt I | OM]L___.__#' -
b i - :
3 o ; -

Nodes

l_ii“'

(c) Fixed Roller

cex---0.28h — #— -0.39h ---e---0.50h — ~— -D.B1hJ

Figure 5.19 The plots of combined method for mode 5 and mode 6 for the (a) free-free,

(b) spring and (c) fixed roller support conditions

103



Chapter § Result and Discussions

5.6 MODEL UPDATING

The analytical method namely the finite element (FE) has been developed in the
last few decades. As discussed by Mottershead and Friswell [33], the objective of the
analytical method is to predict the behavior of a structure and to optimize the design
solution. However, the application of the analytical model has some weaknesses i.e.
modeling errors and accuracy problems which lead to poor correlation with
experimental data. This can provide serious misinterpretation of the analytical results.
Therefore the validation of analytical results with the experimental data should be

verified at the very beginning of the design process.

5.6.1 COMPARISON OF EXPERIMENT AND PREDICTION

Comparison of experiment and prediction using modal data (natural frequencies
and mode shapes) is a common technique used to validate the analytical model.
Generally, if two sets of modal data are similar and in agreement with each other then it
can be concluded that the analytical model is valid. In this investigation, the measured
and the predicted natural frequencies are compared to evaluate the correlation between
the two sets of results. This is often done by a simple tabulation of the two sets of
results but there is no guarantee that the measured modes are correlated with their
predicted data. Therefore positive identification of each mode with its counterpart is
essential for providing a set of correlated mode pairs (CMPs). Modal assurance criterion
(MAC) is used extensively in the modal analysis community for measuring model
similarity and establishing CMPs.

The comparison of the experimental data and FE results for the flexural and
torsional modes in free-free and fixed roller supported beams are summarized in Table
5.5 and 5.6. In the FE modeling, the free-free results are likely to provide the

information on the inertia properties of the beam for modeling other boundary

104



Chapter 5 Result and Discussions

conditions. For modeling the support condition, the support properties are important
factors for modeling the exact boundary condition. In this investigation, the fixed roller
support has some flexibility in the z-axis. When the beam is under vibration, there is the
movement up in z direction. Therefore, a spring with a high stiffness value was used to
model the fixed roller support.

A similar study was reported by Mottershead [35], who carried out vibration
measurements on a cantilever plate with welded joints at the clamped end. The
cantilever was updated using the effective length of the element closest to the clamped
end or alternatively was modeled with the clamped end as an elastic foundation. The
elastic foundation was modeled as a pinned boundary with a rotational stiffness.

Referring to Table 5.5 and 5.6, the FE results of all the first six flexural and
torsional modes of the undamaged beams presented good correlation with the
experiment data for the both boundary conditions. The overall percentage difference in
natural frequencies is below 4% which indicated good correlation except for the first
three lower modes of the fixed roller support. Updating the boundary conditions with
the elastic support at the edge is not sufficient and ideally, other parameters have to be
considered for updating purposes. According to Mottershead[35], the geometric
parameters have considerable potential in updating the model. They have physical
meaning and the measurements are sensitive to changes in them.

According to Ewins [34], a MAC value in excess of 0.9 should be attained for
well correlated modes. From Table 5.5 and 5.6, it was noticed that the MAC values
were above 0.9 for every mode pair. This indicated that the mode shape data of FE were
correlated with the mode shape data obtained experimentally. The MAC value for the
second bending mode for beam 1 with the fixed roller support was much lower

comparatively, due to the quality of the modal data. Thus, the FE model were

105



Chapter 5

Result and Discussions

considered well correlated with the experimental model. The modal data obtained from

FE model can be regarded as the data obtained from the experiment.

Average frequencies | Frequencies | Frequencies MAC values l
Modes of Bl & B2 from FEM | differences, % | B1 vsFE | B2vsFE |
M1 | 83.46 82.69 0.93 0.995 0.994 |
M2 | 229.36 230.40 -0.45 0.985 0.981
T1 | 349.81 358.06 -2.36 0.997 0.999
M3 | 449.93 456.17 -1.39 0.974 0.971
T2 707.43 724.90 -2.47 0993 |  0.994
M4 743.79 754.91 -1.49 0961 | 0957 |
T3 1083.49 1108.80 -2.34 0983 | 0985 |
| M5 1109.65 1109.50 0.01 0944 | 0948 |
T4 | 1482.62 1517.20 -2.33 0975 | 0977 |
| M6 1543.90 1489.30 3.54 0950 | 0945 |
| TS 1913.20 1956.60 -2.27 0965 | 0961 |
Table 5.5 Comparison of natural frequencies and MAC values for the free-free beams
Average frequencies | Frequencies | Frequencies MAC values |
Modes of Bl & B2 from FEM | differences, % | Bl vsFE | B2vsFE |
M1 31.22 33.80 -8.2 0.984 0.979
M2 130.74 108.60 16.9 0.763 | 0.935
T1 378.59 407.47 -7.6 0.996 0.996
M3 | 483.08 487.26 -0.9 0.990 0.975
T2 724.78 753.48 4.0 0.999 0.992
M4 760.01 771.51 -1.5 0.995 0964 |
T3 1096.61 1129.60 -3.0 0.997 0988 |
M5 1119.06 1118.80 0.0 0.988 0975 |
| T4 1494.15 1534.10 2.7 0.994 0.994
| M6 1550.63 1494.40 3.6 0.985 0.986
15 | 1921.13 1971.10 2.6 0.996 | 0.99

Table 5.6 Comparison of natural frequencies and MAC values for the fixed roller

supported beams

5.6.2 CRACKIDENTIFICATION TECHNIQUE

As discussed in Section 5.4.1, the higher the degree of damage in the cracked

beam, the higher the change in its natural frequencies. However it was also observed
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that for the same level of damage, the change in natural frequencies differed for every
mode. Thus, it was inferred that change in natural frequency was affected not only by
the crack depth but also by the crack location. Consequently, a particular frequency
corresponded to different crack locations and crack depths.

Figure 5.20 and 5.21 illustrate the changes in natural frequencies due to the
crack location and crack depth of the first six FE flexural natural frequencies for free-
free and fixed roller supported beams. The changes in natural frequencies were obtained
by a reducing the flexural stiffness in a particular element. This was supposed to model
the stiffness change due to the presence of a crack. The depth of crack was related to the
extent of reduction in the flexural stiffness i.e. EIp/El. Table 5.7 shows the values

corresponding to the level of crack depths.

Normalized EI values for |
damaged element, EIp/El 0.92 1 0.79 | 0.58 | 0.36 | 0.22 | 0.12
Corresponding depth of
crack

0.06h | 0.17h | 0.28h | 0.3%h | 0.50h | 0.61h

Table 5.7 Degree of damage in FE modeling

Referring to Figure 5.20 and 5.21, the percentage changes in natural frequencies
increased when the E/ value of the damaged element was reduced in the model. It was
also observed that the percentage changes in natural frequencies were different for
different crack locations for the same damage level. Mode |1 gave the maximum
percentage change when the crack was located at the mid span and the minimum when
the crack was at the edge. In other words, the maximum percentage change was located
at a high curvature zone and the minimum at the low curvature zone, as shown in Figure
5.22. Similar results were also observed from the other flexural modes. This indicated

that the change in natural frequencies is a function of the crack depth and crack location.
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Figure 522 Change in natural frequencies due to the damaged element (flexural

stiffness = 0.58E7) for flexural mode 1

Based on the concept of changes in natural frequencies as a function of the crack
location and crack depth, a graph with the same normalized frequency resulting from a
combination of different crack locations and crack depths for a particular flexural mode
was plotted. It was assumed that the crack depth or normalized £/ must be the same at
the crack location for all the vibration modes. Consequently, by plotting the normalized
ET along the length of the beam for distinct normalized frequencies, the location of
crack and severity of damage can be identified by the intersection of the curves.

In the procedure of identifying the crack location and severity of damage for a
single crack case, several steps are required in order to achieve the goal.

1. Measure the first six flexural natural frequencies. Usually three natural
frequencies are enough for damage identification but six natural frequencies are
recommended in order to improve the statistics of the curve intersection.

2. Normalize the measured natural frequencies, 1.€. ratio of fyamaged/fundamaged-
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3. Plot graph (normalized EI versus crack location for constant normalized
frequencies) from the different modes on the same axes using the data generated

from the FE model (see Appendix A).

4. The intersection point of the different plots indicates the crack location and
severity of damage.
This concept was originally proposed by Owolabi [36] for identifying the crack location
and crack depth using experimental data while in this study the FE data were used for
the same purpose.

From the result of single cracked free-free beam, the normalized frequencies of
first six flexural modes obtained from experiment were 0.9967, 0.9948, 0.9957, 0.9994,
0.9986 and 0.9951 for 0.17h cut and 0.9933, 0.9863, 0.9892, 0.9986, 0.9965 and 0.9875
for 0.28h cut. These normalized frequencies were plotted on the same axes as shown in
Figure 5.23. From this figure, it was observed that all the lines intersected each other at
the relative crack location 0.26 where the crack was located. The approximate values of
flexural stiffness, £/ at the crack location were 0.79EI and 0.58EI which corresponded
exactly to 0.17h and 0.28h cut for the beam.

A similar procedure was also applied to a fixed roller supported beam for the
cases of 0.17h and 0.28h cut located at the quarter span. Mode 1 and mode 2 were
omitted because of the inconsistent change in natural frequencies due to the level of
damage, as shown in Table 5.2. This is because the changes in natural frequencies are
significantly influenced by the boundary condition, especially for the lower modes.

The normalized frequencies obtained from the experiment for mode 3, mode 4
mode 5 and mode 6 were 0.9911, 0.9996, 0.9989 and 0.9952 respectively for 0.17h cut
and 0.9801, 0.9969, 0.9964 and 0.9877 respectively for 0.28h cut. Referring to Figure
5.24, the graphs plotted on the same axes for both crack cases do not show any

significant pattern for identifying the crack location and severity of damage. A possible
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reason 1s that for fixed roller supported beam, it is difficult to measure the natural
frequencies accurately due to the influence of the boundary condition. The
incompatibility of FE results and the experimental data can be another possible reason.
However, based on the assumption that the normalized ET must be the same at the crack
location for all the vibration modes, it can be inferred that the difference of the
normalized EI values between the modes is small at the crack location. Thus, by
subtracting the maximum normalized E/ and the minimum normalized E7 will return a
minimum value at the crack location.

By plotting the values of the difference in normalized EI along the length of the
beam, it can be noticed that the minimum value was located at the location 0.26 where
the crack was located for both cases, as shown in Figure 5.25. The severity of the
damage can be indicated by taking the average values of normalized £/ which were
0.795ET and 0.487EI for the 0.17h and 0.28h cut respectively.

Based on the above results, a modification of the technique proposed by
Owolabi [36] has successfully identified the crack location and severity of damage for
the free-free and fixed roller supported beam. However there is a problem for structures
with symmetrical mode shapes which possibly presents two crack locations. Thus it is
more applicable for the structure with non-symmetrical mode shapes. According to
Owolabi [36], in a situation where the crack location coincides with a vibration node,
break in the graph was occurred, and no point of intersection can be obtained. However
in this investigation, by using the FE data, the graph could be plotted along the beam
length and the intersection was always obtained although the crack was located at the
vibration node. Moreover sets of experimental data for different crack locations are not
required, because these data can be obtained form the FE model. However, it must be
emphasized that the FE model must be well correlated with the experimental results. If

the correlation is unsatisfactory, then the FE data are not valid for this purpose.
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(a) Normalized frequencies for first six flexural modes are 0.9967, 0.9948, 0.9957,

0.9994, 0.9986 and 0.9951 respectively
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Figure 5.23 Normalized E7 versus crack location with the same normalized frequency

for the first 6 flexural modes in the free-free beam, (a) 0.17h cut and (b) 0.28h cut
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(b) Normalized frequencies for mode 3, mode 4, mode 5 and mode 6 are 0.9801,

0.9969, 0.9964 and 0.9877 respectively

Figure 5.24 Normalized EI/ value versus crack location with the same normalized

frequency for the flexural modes in the roller supported beam, (a) 0.17h cut and (b)

0.28h cut
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