CHARACTERIZATION OF POLY (VINYL CHLORIDE) BASED ELECTROLYTES AND BATTERIES

BY

RAMESH T. SUBRAMANIAM, B.Sc. (Hons)

A dissertation submitted in partial fulfilment of the requirement for the Degree of Master of Technology (Material Science)

INSTITUTE OF POSTGRADUATE STUDIES AND RESEARCH UNIVERSITY OF MALAYA KUALA LUMPUR MALAYSIA 1999

Dimikrofiskan pada 25. 02. 2000
No. Mikrofis 14473
Jumlah Mikrofis 2

HAMSIAH BT. MOHAMAD ZAHARI
UNIT REPROGRAFI PERPUSTAKAAN UTAMA UNIVERSITI MALAYA
DECLARATION

I hereby declare that the work reported in this dissertation is my own
unless specified and duly acknowledged by quotation.

25 March 1999

Ramesh T. Subramaniam
ACKNOWLEDGEMENTS

First and foremost, my most sincere and profound appreciation to my supervisor, Associate Professor Dr. Abdul Kariem Arof for his instrumental role in assisting me to complete this dissertation. His valuable guidance was an essential factor in the progress of my work. A note of gratitude I wish to also extend to Dr. D.K. Roy, the co-supervisor, who provided motivation when I most required it.

A special word of thanks to Professor Dr. S. Radhakrishna for his words of encouragement, without which, I may not have ventured in this field. To my laboratory mates, Jacob, Mathi, Venga, Lim, Rajan, Anand, Shamim, Baharam, Sundar, Amin, Vicky, Bouzid, Zu, Malik and Zurina I wish to extend my gratitude for all their help and I will cherish the moments we spent together working on our individual as well as common goals.

I would also like to take this opportunity to thank my fellow friends and housemates, namely Raman, Terence, Nantha, Stephen, Kapar, Selva, Gandhi, Prakash, Murali, Raghu, Rotu, Sivam, Mano, Rajesh, Karu, Mani, Jesu, Dass, SP, Sashi, Shankar and others who had directly or indirectly contributed towards my efforts in completing this work.

A note of gratitude also goes to the staff of SIRIM laboratory, Chemistry Dept. laboratory (UM) and Physics Dept. laboratory (UM) for the assistance provided during the course of my work. My gratitude also goes out to IRPA for the valuable financial aid provided which greatly contributed towards the successful completion of my dissertation.

Last but certainly not least, I owe a great deal to my mother, brother, sister-in-law, sisters and my nephews who have, in more ways than one, encouraged and assisted me in my endeavours.

My final acknowledgement goes out to the One who has no finality. He has answered my prayers in many ways and blessed me with the faculties that has enabled me to achieve this success.
ABSTRACT

Poly (vinyl chloride) has an electrical conductivity of 10^{-8} S cm$^{-1}$. It can serve as a host matrix for solvating lithium salts. The highest room temperature electrical conductivity of 5.2×10^{-6} S/cm was achieved for the composition of 50 wt % PVC, 15 wt % LiCF$_3$SO$_3$ and 35 wt % LiBF$_4$. The conductivity value was still in the order of 10^{-6} S/cm upon adding ethylene carbonate (EC). With the aim to raise the room temperature ionic conductivity of PVC based polymer electrolyte and considering that the ionic conduction preferentially occurs in the amorphous phase, the PVC powder was irradiated and the crystallinity was further suppressed by plasticizing with ethylene carbonate (EC). By incorporating LiBF$_4$ and LiCF$_3$SO$_3$ to the above described polymer host, the ambient ionic conductivity of the electrolyte could reach as high as 4.5×10^{-4} S/cm. The conductivity was further enhanced by adding both ethylene carbonate (EC) and propylene carbonate (PC) as plasticizers. At room temperature the conductivity value of 2.60×10^{-3} S/cm was obtained with a concentration of 9 wt % PVC, 2.7wt% LiCF$_3$SO$_3$, 6.3 wt % LiBF$_4$, 12 wt % EC and 70 wt % PC. The conductivity-temperature data of plasticized PVC electrolytes follows the Arrhenius relationship. In addition, the polymer electrolyte samples were investigated using transference number, X-ray diffraction, DSC and TGA techniques. The sample which shows highest ionic conductivity at room temperature was used to assemble a solid state battery and its characteristics were presented and discussed.
CONTENTS

Acknowledgements ... i

Abstract .. ii

Contents .. iii

Chapter 1

1.0 Introduction ... 1

1.1 Solid State Ionics ... 1

1.1.1 Framework Crystalline Materials 3

1.1.2 Ion Conducting Glasses .. 4

1.1.3 Composite Electrolytes .. 4

1.1.4 Polymer Electrolytes .. 6

1.2 Polymer Electrolytes ... 6

1.2.1 Classification of Polymer Electrolytes 7

1.2.2 Criteria for Polymer/Salt Complexation 8

1.3 Conductivity Mechanism in Polymer Electrolytes 9

1.4 Poly(vinyl chloride) (PVC) .. 18

1.4.1 Characterization of PVC 19

1.4.2 Physical Properties ... 24

1.4.3 Chemical Properties ... 25

1.4.4 Mechanical Properties 26

1.4.5 PVC Compounding ... 27

1.5 PVC as an Ion Conducting Polymer 27

1.5.1 Addition of Salts .. 29

1.5.2 Addition of Plasticizers 30

1.5.3 γ-irradiation Technique 32

1.6 Comparison with other Polymer Electrolytes 33

1.7 Polymer Batteries ... 35

1.8 Intercalation Materials ... 39

1.8.1 Anode Materials ... 39

1.8.2 Cathode Materials ... 40

1.9 Objectives of the Present Work 41
Chapter 2

2.0 Experimental Procedures .. 43
2.1 Preparation of Polymer Electrolytes 43
2.2 Ac-Impedance Spectroscopy 44
2.3 Ionic Transference Number Measurement 48
2.4 X-ray Diffraction (XRD) ... 50
2.5 Thermal Analysis .. 53
 2.5.1 Differential Scanning Calorimetry (DSC) 54
 2.5.2 Thermogravimetric Analysis (TGA) 56
2.6 Battery Charge/Discharge Characteristics 58

Chapter 3

3.0 Results and Discussion I – Electrical Properties 60
 3.1 Ac-Impedance Spectroscopy 60
 3.1.1 Effect of Mixed Salt Systems 60
 3.1.2 Effect of Mixed Salt and EC 70
 3.1.3 Effect of γ-irradiation Technique 76
 3.1.4 Effect of Mixed Plasticizers (EC and PC) 83
 3.1.5 Complex Admittance Analysis 90
 3.1.6 Ion Conduction Mechanism 93
 3.1.7 Conductivity-Frequency Dependence 95
 3.1.8 Modulus Studies 97
 3.1.9 Dielectric Relaxation Studies 100
 3.2 Transference Number Measurement 104

Chapter 4

4.0 Results and Discussion II – Material Characterization 109
 4.1 X-ray Diffraction Analysis (XRD) 109
 4.2 Thermal Studies .. 119
 4.2.1 Differential Scanning Calorimetry (DSC) 119
 4.2.2 Thermogravimetric Analysis (TGA) 124