CHAPTER 2

NEUTRINO-ELECTRON SCATTERINGS

2.1 Introduction

Processes involving neutrinos play an important role in astrophysics. A
neutrino interacts very weakly with matter with cross section ~ 10*’ cm? and hence
the neutrino carry away all its energy when it escapes from a star. Among the
important neutrino processes are URCA process, neutrino bremsstrahlung, photo-
neutrino process, pair annihilation and neutrino emission from plasma [5]. In this
section we will discuss the neutrino-electron scattering processes using the

electroweak theory.

2.2 Neutrino-Electron Elastic Scatterings

In this section, we will derive the invariant amplitude for the v — e
scatterings within the framework of the standard electroweak theory and hence
calculate the cross-sections. The neutrino electron elastic scattering can be of the
neutral or charged current type [6]. The v, — e process involves both the neutral and
charged current interactions while for other types of neutrinos only via neutral

current interaction (Fig 2.1).
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Fig2.1 Feynman diagrams for the v(;)-f— e - v(;)-i» e elastic scattering processes.



In the ve — ve neutral current interaction, the leptons are coupled to the Z°
boson. The general neutral current interaction for the coupling Z° — /7 (Fig 2.2)

is written as
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with the vertex factor written as
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where the vector and axial-vector couplings are given in Table 2.1.

The invariant amplitude for a neutral current process M " of a general
ve —> ve scattering described by the Feynman diagrams with vertex factor (2.2) can

be calculated using the Feynman's rule, i.e.
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Table 2.1 The g and g/ couplings for Z” — f f vertex factor in the standard electroweak
theory.
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Fig.22 Z° - ff neutral current coupling.



where the terms in the square bracket are the Z° propagator and q is the four-
momentum transfer in the scattering process. At low momentum, |q* << M;? and

M™ becomes
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M, can be expressed in terms of M, from the equation M, /M, =cosé, so that
the coupling constant g can be written in terms of the Fermi constant Gr. Finally the

neutral current invariant amplitude takes this form:
- —-[vr (-7 W] ler, (e - 2irs ). @5)

In the v,e” > v, charged current interaction, the leptons are coupled to
the W boson. In the standard electroweak theory, the left-handed fermions are
grouped as doublets and thus the charged current interaction expression for the

v.e” = v, scattering is written as
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For the coupling W* — v,e*, depicted in Fig 2.3 (a), the interaction term is
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For the coupling W~ — v e, (Fig. 2.3 (b)), the interaction is described by

.8 — -
"ﬁ e:.}’”V,LWy

and the vertex factor is the same as in the W* — v,e" coupling.
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Using the vertex factor (2.8), the amplitude for the charged current M at

low momentum transfer |q” << My? is

R s A

(2.10)
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Fig 2.3 Charged current interaction for the couplings (a) W* — v,e* andalso (b) W~ — Ee'.



The negative sign arises from the interchange of the outgoing leptons. Using
Fiertz transformation in which the states v, and e are interchanged with a
corresponding change of sign, the charged current amplitude acquires a positive

sign,
M = +%Fir”(l—n)e] lr,-rsw.]. @11

To calculate the cross-sections of the ve — we scattering processes in the
laboratory frame it is necessary to consider scattering in all possible spin
configurations. This can be done by averaging [M|? over initial and summing over
final electron spins. Let k; and k, be the four-momenta of the initial neutrino (v,)
and final neutrino (v, ) respectively, and p; and p; be the four-momenta of the initial

electron (e)) and final electron (e;) respectively.

() viv)+e > v(vp+e

The spin averaged amplitude |M|* for these processes are evaluated by

using the neutral current amplitude (2.5) and the spin summations are carried out by

using trace theorems.



Thus, we obtain
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In the above expression and for all subsequent ]M[Z , we use the approximation,

m,=~0. The neutrino mass in the d i will be lled when evaluating the

cross-section. The couplings g,(z gf) and g A(E gj) refer to the electron couplings.
For the Ze' —>Ze' scattering, |M|2 is obtained by making the replacement
k> ky,ie.
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(i) ve(v)+e > v(v)+e

The invariant amplitude is the sum of the neutral and charged currents:
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where g'y = gy + 1 and g'a = ga + 1. Hence,
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The |M| ]1 for v,e” —>v,e” is obtained by interchanging k, <> k, :
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We can combine the amplitudes MZ into a single general form. In the
laboratory frame where the initial electron is stationary, target with p, =0, the
elastic scattering kinematics relations in W can be approximated using the four-
momentum k¥ =(E,,.k,) , k¥ =(E,,.k,) together with p{ =(m,,0) and also

Py =(Eezv£,) :

k-p = k-py = mE, ;

k-p, = ky-p, = mE,, = m(E,+m,—E,) = mE, (1-y), 2.17)

where y = E—'ZE——

vi

ki -k, = mkE,y.
Therefore, the general form of |M| |2 is written as
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The coefficients in Eq (2.18) 4, B and C are given in Table 2.2. Substituting

(2.18) into the formula for the differential cross-section do we have

do _ G ""E" [A+B(1-y)2

- ’E" ] (2.19)

The differential cross-section (2.19) is integrated from y=0,to y=1 and

thus yielding the total cross-section,

ol —>we) = 2—' mE, { ] (2.20)

3 2E,

Neutrinos are relativistic particles and hence m, << E,,. The cross-section is

reduced to

2
ale —>we) = f—/’r ,E,,[A+;B] ~10* E,, (cm?) (2.21)

2
where 2—' me = 4.31 x 10*? cm® GeV™' and E,, is in GeV.
va
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Processes A B c
vate v, ve” (g.+8.4) -2 | i-27)
Vyre >V, ve (e.-2.) (2. +2.) (ea+en)
v ovre | (gea) | E-e) | s
Vore oV e (g,-g.f (g+&.) (g +g.)

Table 2.2 The coefficients A and B, where g, =g +1 and g, =g} +1.
The CM total cross-section for ve — ve elastic scattering is defined as

2
O e > ve) = 46—; S[A +%B] (2.22)

with § ~2m,E, .

2.3 The Seesaw Mechanism

If the right-handed neutrino is assumed to exist. Dirac mass terms for the

neutrino similar to the charged-leptons can be constructed as

my, vy + myvev, = mwv. (2.23)

v
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In some GUTs, in which neutrinos can acquire a non-vanishing mass, a
majorana mass term is introduced by the coupling of two fermions or two
antifermions and thus violates the fermion number conservation. Dirac mass term

does not violate the fermion number conservation.

In the SO(10) models, right-handed neutrinos are arranged as SU(5) singlets
and the (B-L) number is usually not conserved. The fermions of each generation are

1 iaducibl

grouped into a 16-di i ir spinor

jon of SO(10), while

P

the SU(S) content is 16 =5+10+1.

A neutrino mass of the Dirac type comparable to the quark or charged lepton
mass can be generated using the coupling of the left- and right-handed neutrinos

with the Higgs scalars (with non-zero vacuum expectation value).

Gell-Mann, Ramond and Slansky [7] suggested the seesaw mechanism
where neutrinos acquire a small non-vanishing mass. In their scheme, the neutrino

mass matrix for one generation [8] in the Lagrangian is written in the form

[ 0 "'“]‘ (2.24)
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The Dirac mass term of the order of charge —% or up-type quark mass of the same

generation is mp. Mg is the singlet Majorana mass of the order of the grand
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unification scale. By diagonalising the neutrino mass matrix and since mp << Mg,

the mass eigenvalues of the light neutrino mass is given as

(2.25)

and the heavy neutrino mass by giving it the mass of the order of the grand

unification scale is
my~My . (2.26)

Eq (2.25 ) can be generalised to the three-generation neutrinos by writing it

2
‘Z; (i=123) @27)
.

m, =

with the assumption that Mp; < Mp; < Mp;. The values of the neutrino masses

predicted by the seesaw model is

m~10"0eV , m~10°eV, m~107eV (2.28)

where we have used the masses of u, ¢ and t quarks and Mg ~ 10'* GeV. Hence the

seesaw mechanism gives a natural way of generating small neutrino masses.
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