CHAPTER 4

NEUTRINO OSCILLATIONS

4.1 Introduction

In principle, to show that a particle has mass, it is necessary to show that it
travels at less than the speed of light. However, most neutrinos are produced
travelling at almost the speed of light, and they interact extremely weakly with
matter, so they are very hard to slow down. Instead, most searchers for neutrino
mass rely on quantum-mechanical interference effect, the neutrino oscillation. If
neutrinos have mass, and if the neutrinos produced by the weak interactions do not
have definite mass, but are quantum-mechanical mixtures of states with different
mass, then the composition of a beam of neutrinos will oscillate. In other words,
they change flavour back and forth with distance from the source, i.e. they could
oscillate from electron neutrino to other types of neutrinos. Then neutrino
oscillations will occur if the weak neutrino eigenstates are not mass eigenstates, but
superpositions of them. Flavour oscillations as well as matter-antimatter oscillations
are also a possibility within the assumption that two neutrinos only are mixed.
Theoretically, the formulation of the flavour mixings of Dirac neutrinos is identical
to that of the quark sector. If the neutrinos are Majorana particles, then the number
of parameters necessary to specify the mixing matrix differs from that required for

Dirac neutrinos.
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Some experiments like the Kamiokande and Super-Kamiokande in Japan
[4,16] have tried to see the oscillations of the neutrinos inside the particle shower
generated by the interaction of cosmic rays with atmospheric particles. The other
main source of the neutrinos observed at Super-Kamiokande is the sun. Neutrinos
pass through all forms of matter almost without interaction. This is why the
detection of solar neutrinos was originally proposed as a way to 'see' directly into
the core of the sun. Neutrinos are produced deep in its core, where the fusion
reactions that power the sun take place and the investigation and understanding of
the sun as a typical main sequence star is of outstanding importance for an
understanding of stellar evolution. Neutrino mass has never been firmly found by
evidence but however new evidence from the Super-Kamiokande [4] provides

indications for the atmospheric v, <> v, oscillations. The Super-Kamiokande result

shows that muon neutrinos are disappearing into undetected tau neutrinos or perhaps
some other type of neutrino, i.e. sterile neutrino. This can only occur if the neutrino
possesses mass. The experiment, however, does not determine directly the masses of
the neutrinos leading to this effect, but the rate of disappearance suggests that the
difference in masses between the oscillating types is very small. Results from the

Super-Kamiokande favour the mass range of 107 eV ? < Am? <6x107eV? [3].
Neutrino oscillations can occur when the mixed neutrino eigenstates

propagates through vacuum or matter. In this chapter, we will discuss the physics of

the oscillations in vacuum before moving on to the oscillations in matter. In the
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oscillations in matter, we will consider the adiabatic conversion and non-adiabatic

conversion.

4.2 Neutrino Oscillations in Vacuum

If neutrinos have finite, non-degenerate masses then the neutrino flavour
eigenstates vy ( f=e,u,t) are not necessarily coincide with the mass eigenstates v;
(i=1,2,3). Propagation of mass eigenstates are mixture of the flavour eigenstates or
vice versa. Neutrino mass eigenstates are related to the flavour eigenstates by a
unitary mixing U i.e.

v, =YUpy, f=emr i=123. 4.1)

For two neutrino flavours v, and v; is the mixing characterised by a single

mixing angle 6

v, _ co.sg sin@ Y v, . “2)
v, —sin@ cos@ A\ v,

The mass ei are the eif of the neutrino Hamiltonian in

vacuum and hence they propagate independently with no v, <> v, process. They

have different phases during propagation; v,e" due to different mass with the phase
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factor given as ¢, = E,f — p,x where E; and p; are the energy and momentum of the

v.)

neutrino respectively. Then at any time ¢, we can describe the propagation of

after time ¢ as

v (1) = [e"""' cos? @ +e ™" cos? 0]|v, (0))

+ [e"F’" cos? @ +e"" ]sin Gcosblv, (0)) . 4.3)

The probability of the state ]v,) converting to the different flavour for instance the

muon neutrino |vy) is

P(vl - vy)= |(vﬂ|v,(l))'2

= %sin’ 26[1 - cos(E, - E, ¥] - (4.4)

In normal astrophysical situations, temperatures are high and the neutrinos are

usually relativistic and we can approximate the energy difference as

2
E,_E|:"’22;’”' =2’; . 4.5)

51



Inserting (4.5) into (4.4), we get
T2
l’(v‘ - v”)= Esm 26[1 - cos Ag) (4.6)
where the phase difference is

2
3’; ‘. @7

a4()=

According to (4.7), the phase difference increases monotonously with time
which gives rise to the oscillations. The oscillation length in vacuum, L, can be

found from (4.6) since the distance traveled by the neutrino L ~ and it is written as

L="os. (4.8)

Eq (4.6) is usually written in a compact form by using (4.8) which is

2
Py, > v,)=sin?26sin? A7,
4E

=sm2295inz(n£)
Lv

=sin? Zasin’(l 27Am? é) (4.9)
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where L, E and AM are in m MeV and eV? respectively. Survival of the electron

neutrino is evidently given as

P, »v,)=1-Ply, 5>v,). (4.10)

We conclude that for oscillations to occur Am” # 0 ie. at least one of the
neutrino must be massive or their masses do not coincide and 0 # 0 which indicate
that there must be a mixing between neutrinos. There are three conditions for

neutrino oscillation observation:

1. If L/L, >> 1, the oscillating term sin® ( & L/L, ) would oscillate rapidly with L

giving an average effect described by
(P(v. —»v,))=l—%sin220. (4.11)

For maximum mixing, only 50% of the original electron neutrinos will be observed.

2.1f L/L, << 1, hence sin® (mt L/L, ) << 1, then the oscillation pattern will vanish.



3.fo=%[~ then sin* (m L/L,) =1 and hence

P(v, »v.)=1-sin?20 . 4.12)

In the situation of maximum mixing, the full phenomenon of oscillations will be
observed. Thus the oscillation pattern can be observed if the length of the
experiment is of the order of magnitude of the oscillation length.

There are two general types of neutrino oscillation experiment namely the
appearance experiments that look for v, »>v, (I#/) and the disappearance
experiment that look for any reduction in the flux of the original neutrino [3]. Up to

1998, experiments obtained negative results on the oscillation.

Recently, Super-Kamiokande experiment [4] reported possible positive
results of atmospheric neutrino oscillation, the experiment would expect 29 + 3
muon events but it was reported that only 17 v, events were recorded [4]. The data

is consistent with v, — v, oscillations while v, — v, oscillations do not fit the

Super-Kamiokande data. Also oscillation to sterile neutrinos is disfavoured.
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4.3 Neutrino Oscillations in Matter

In this section, we will consider the effect of matter on the propagation of
neutrinos. Wolfenstein [17] pointed out that the coherent forward scattering of
neutrinos in matter as discussed in Chapter 2 will modify the vacuum oscillations
because the scattering of electron neutrinos with electrons has the charged current
contribution apart from the neutral current which is the same for all neutrino flavors.
Mikheyev and Smirnov [18] used the Wolfenstein matter oscillations to explain the
solar neutrino problem. Oscillations can be greatly enhanced in a slowy changing

electron density. Bethe [19] rederived the Mikheyev-Smirnov-Wolfenstein (MSW)

' 1

using the level ing picture.

The main effect for a medium which is transparent to neutrinos and realised
at low energies is refraction and the phase factor of the neutrino wavefunction
changes from ipyx to ip,n.x where n, is refractive index of matter of the neutrino-
matter scattering. In this instance the wavefunction of the neutrino is described by

v, (x,1)~ enre (4.13)

where the proportional constants are the mixing matrix elements. The change in the

neutrino function after p ing through a di dx in matter is obtained
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by differentiating (4.13) i.e.
av,
—ZL—ip,(n, -1, . 4.14
dx ! V(nv 4 @149

Index of refraction for the v, - ¢ scattering contains the charged current f“ and
neutral current /™ contribution. Thus for ve—> v, oscillations, Eq (4.14) in terms of

the scattering amplitude written in matrix form is,

ii[“}‘_{f"{*fw "][v] (4.15)
a\v,) p, o VA (A

Thus we can see that the overall phase shift to the neutral current scattering is
common to both neutrinos and such has no physical significant. For highly
relativistic neutrinos, the time development of v. and v is described by a

Schroedinger-like equation [19],

ja(ve] 1 m,’ cos? 0 +m,’ sin> 0 + A Am’ sin @ cos@ \
Am’ sin @ cos@ m,’sin? @ +m, cos’ 0

J (4.16)

v,“
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where we have ignored the neutral current scattering, p, ~ E, and the mass squared

arising from matter effect from the v-e” charged current scattering is

A=2J2G,N,E, . 4.17)
Diagonalising the mass matrix in (4.16), the eigenstates are
M} =;—(m,z+m22+A)t%AM’ (.18)
where
aM? =[(Am200520-,4)z +(am?sin20f . (4.19)
The weak ei for the propagation in matter are now described by a
mixing angle in matter 6,
v _ cf)s()M —siné,, \ v. . @.20)
Vi)y \sin@, cos@, \v,
As in the vacuum oscillation, the mass matrix in matter is given as
2 (- cos2, in 20,
M=AM .cos g, sin26,, . @21
4E, \ sin26,, cos20,,
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and equating it with (4.16) gives the relationship between @ and 6y,

sin? 20
24c0s20 (4 Y
T
Am Am

sin?26,, = (422)

The survival probability of the electron neutrino has the same form as in the

vacuum oscillations i.e.
P(v, »>v,)=1-sin?20, sin’| = (4.23)
3 M L
M

where the oscillation length in matter

Ly, =" (4.24)

In (4.24), the Wolfenstein characteristic matter oscillation length is defined

by equation (4.22)

27

Ly=—4+———. 4.25
= J56,N, (4.25)
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Thus (4.22) can be rewritten using Ly as

-2
sin?20, =— 020 (4.26)

2
1- 2( LLJCOSZG + [5—)
L() L()

We can describe the MSW effect using the plot of sin? 26,, as a function of

L .
—* and is shown in Fig 4.1 for matter with constant density,
3

1. When —LLL <<1, Eq (4.26) gives Oy ~ O and from Eq (4.25), Ly ~ Ly. Hence the
‘0

survival probability in matter (4.23) is the same as in vacuum. In this region the

effect of matter is not important.

e

. . L .
2. When -[é:'— >> 1, the oscillation amplitude is surpluses by —< since
‘0 v

2
P(v, > V¢)=(%J sin? 26, sin’[Lﬂ].
‘M

v

L . P .
3. When L—V = €0S 26y, from (4.26) we have maximum mixing in matter since

= /4 i.e. the MSW resonance condition. In the case of matter with changing density
as in the sun, the resonance takes place in a layer with density range where the

adiabatic layer is larger that the oscillation length during resonance.
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In the sun, since f” = cos 20at the MSW resonance the electron density at
0

resonance is

res _ Am? c0s20
NS =2 C0SS0
242G, E,

(4.27)
This means that the electron neutrino produced in the sun will go through the
resonance region if the density at its production site is greater than N,". The

neutrino has a minimum adiabatic energy E,* for a adiabatic resonance which is

E'> 6.44x10° Am” cos 20
T N
N,

(4.28)

where Am’ is in eV and E/ in MeV with N the electron density at the centre of the

sun. We can obtain E," using the electron density as shown in Chapter 3.

4.3.1 Adiabatic Conversion

In the sun, the electron density is non-linear as shown in Fig (3.5). We can
rewrite the propagation equations in matter in terms of mass eigenfunctions in

matter v," and v," by diagonalising (4.16) to give



Fig4.1 Resonance curve for the neutrino oscillations in matter for the MSW mechanism.
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de,

2 > M
v ] M TR
dc\V, ) 2E,|;np 9Ou M2 Vor
" dx

(4.29)

The change of 6y can be obtained using Eqs (4.19) and (4.26) and setting the

off-diagonal terms small compared to —;-AM ?, the adiabatic condition requires that

at resonance,

L |aN,| __Am’sin20
N“|dx|,  2E,cos6

If we define the adiabatic parameter vy, as

Am’N," sin? 26
7A e

e

dN,
2E, 26|
v o820

res

then the adiabatic condition can be stated as

Ya>>1 .
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(4.32)



During propagation of the neutrinos in the resonance region, the phase of the
neutrino wavefunction will average to zero and this will reduce the probability to be

the classical probability [20] which is
P(v, —>v,)=%(l+cosl€cos20’,,). (4.33)

Bethe [19] described the MSW mechanism in the adiabatic situation using
the level crossing concept. In matter, an electron neutrino gains an additional

potential energy in the v, — ¢ scattering which is given as
v =(e,|Hcle,) (4.34)

where H,’ is the effective charged current Hamiltonian

. Gp— -
H =T;v,7”(1 ~rser -7k (4.35)

In the rest frame of the solar medium and the electrons are unpolarized, the

additional potential energy is

V =\2G,N, (4.36)
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which is equivalent to an increase in the mass of the neutrino 4 ~ 2E,V as given by
Eq (4.17). In the adiabatic limit, (Am2 cos26 — A)z in Eq (4.19) must be a minimum

so that the ei lues are almost d This requires that rr122 >m, and in this

4

case

A =Am?cos26. 4.37)

A plot of neutrino mass as a function of density is shown in Fig 4.2. At low
density the mass of v, is smaller than v,. But it increases when the electron neutrino
interacts with the electrons while the v, mass remains the same. When the two
curves are at the minimum splitting given by (4.37), the MSW resonance is met. A

is pi ited by Am’cos26. After going through the resonant

region v, will follow the v, curve and this gives the adiabatic conversion. From Eq
(4.17), the relation of adiabatic density o and energy E,” for the resonance to occur

is

A=Am*c0s26 ~7.6x10* p*E/ (4.38)



<1

Fig 4.2 The masses of v, and v, as a function of p [18]. The z does not have a resonance with E
since it has an interaction of the opposite sign with matter.
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where g is in g/cm’. Using the standard solar model described in Chapter 3, the
Bethe's solution can be calculated for the chlorine experiment. The chlorine detector

detects 6.5% of the *B neutrinos in the solar model.

For Bethe's paper, the adiabati¢ conversion energy is E,' ~5.1 MeV and
since N:/N,~93.04 cm>, Eq (4.28) gives the adiabatic solution to the solar

neutrino problem as

Am* ~7.4x 10° eV2. (4.39)

Using this value, the seesaw model predicts the neutrino masses as

m, im, im, =2.0x107:86x107:24 eV . (4.40)

4.3.2 Non-Adiabatic Conversion

The adiabatic mechanism for the v, — v, conversion is no longer valid if
the non-diagonal elements of the mass matrix in Eq (4.29) are comparable or larger
than the neutrino masses. In this condition y4 ~ 1. The diagonal eigenstates in matter
will mix, preventing the v, — v, adiabatic conversion. To get the probability we

have to solve the propagation Eqs (4.29) in order to obtain the conversion



probability. Parke [21] derived an analytic electron neutrino survival probability that

includes a correction term to the adiabatic conversion.
If the neutrinos are produced well above the resonance region, the

probability of detecting an electron neutrino averaged over the production and

detection positions is shown to be [21]
(P, > v‘,)>=%+(—;--1’,.)cos20ws20,, (4.41)

where . = P(v, <> v,) is the non adiabatic correction probability for |v,) <> |v,).

The form of P is analogous to the Landau-Zener level crossing [22] and if N, is
assumed to be constant then

Pz, (4.42)

When y4 >> 1, Pc—>0 and Eq (4.41) is just the adiabatic conversion

probability. When the neutrinos are produced at densities greater than the resonance

density, cos2@~ -1 because 6,, ~ 7/2. Then Eq (4.41) reduces to

(P(v, > v,))~sin’ @ + P.cos20 . (4.43)
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Using the standard solar model in Chapter 3, the electron density in the

exponential form can be derived numerically and has the form

Ny R
—R =240exp| —10.64— |.
. ’“{ Ro)

Differentiating and inserting into Eq (4.31) we have

. 1.66x 10® Am? sin? 26
cos20E,

A

(a.44)

(4.45)

and thus we can calculate Pc. In the adiabatic situation, Pc = 0 and (4.43) reduces

to

(P(v, > v,))=sin’ 0

and this is the same given by Eq (4.33).
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