Chapter 3 Computer Network Simulation

One of the objectives of this thesis is to create a simulated environment that allows
testing and experimentation of a NewReno simulation. This chapter will begin in the
first section with the introduction of the computer simulation model and study the

different types of simulation models.

The second section will discuss the various available simulators. A survey of existing
network simulators is performed to show current approaches to network simulation.

The section concludes with the advantages and disadvantages of each simulator.

The third section will explain the differences between the procedural approach and the
object-oriented approach. A discussion of the advantages of the various programming
approaches is conducted. This section will also emphasize the importance of the
object-oriented approach in coding structure and reusability, compared to the
procedural approach. A brief discussion on an object-oriented programming
language, JAVA, is also given. Finally, a discussion on the programming tool that

will be used to develop the network simulator is introduced.

The final section of this chapter is a summary of this chapter.

3.1 Computer Simulation

“Simulation is defined as the imitation of the behavior of some existing or intended
system, or some aspect of that behavior. Examples of where simulation is used
include communication network design, where simulation can be used to explore

overall behavior, traffic patterns, trunk capacity, etc., “ [V.ILLINGWORTH]

Today simulation can be performed on digital computer called computer simulation or
digital simulation. Computer simulation can imitate the model of an actual system.
Sometimes it only consists of partial characteristics of the vital properties of the actual

system.

24

To implement an actual system is too expensive and difficult as physical network
devices themselves are expensive and require a large network working space. From
the technical aspect, it is more difficult to configure as well, compared to a computer

simulation.

A computer simulation can avoid the same problem faced by the actual system since it
only needs a set of Personal Computer (PC) and the right simulation software. A

computer simulation is a cost-effective solution to imitate an existing actual system.

3.1.1 Simulation Model

A model is an abstraction of a system intended to replicate some properties of that
system [C.M.OVERSTREET]. With the collection of the properties, model design is
based on its objective to replicate some properties of that system. Model design

should be workable and solves a problem domain.

Simulation model works on simulation, which imitates the actual system. The
simulation should be able to collect the outcome of the simulation process. The
simulation-collected result can determine whether the problem domain can be solved.
If it cannot, it will provide another alternative to solve the problem. For example, in
the case of a sender-side’s TCP version of congestion control, if there are more than
two consecutive lost segments occurring, Tahoe cannot provide an effective amount
of throughput. This is because Tahoe does not consider more than one consecutive
lost segments. Reno or NewReno are the other alternatives to get a large amount of

throughput because they consider more than one consecutive lost segments.

[*)
G

3.1.2 Simulation Approach

According to R. E. Nance, computer simulations may be divided into three categories
based on the simulation approach [R.E.NANCE]:

1) Monte Carlo simulation, a method by which an inherently non-probabilistic
problem is solved by a stochastic process, where explicit representation of time is
not required :

2) Continuous, in which the variables within the simulation are continuous functions
(normally involve solving differential equations)

3) Discrete event, where the change of the values of program variables happens at

finite number of time points in simulation time (not necessarily evenly spaced)

Usually, the actual simulation involves the use of a combination of techniques. For
example, a “combined” simulation refers generally to a simulation that has both
discrete event and continuous components, whereas a “hybrid” simulation refers to
the use of an analytical submodel within a discrete event framework. For network
simulations, especially packet-level simulations, the discrete event approach is thes
most significant. The JaNetSim, as well as all network simulators discussed in this

chapter, are based on the discrete event approach.

It is often possible to use a simulation model in conjunction with a less realistic but
“‘cheaper-to-use” analytical model [BRATLEY]. An analytical model describes the
system in question with mathematical formulas obtained through analyses (e.g.
probability theory. queuing theory, etc.). Once the formulas are derived, the
evaluation of the system can be quickly done. An analytical model often involves too
many simplifying assumptions and may not represent the actual system correctly. On
the other hand, the simulation model more closely resembles the actual system and is
generally more accurate, but with a high computation cost. One approach is to first
evaluate a system using an analytical model, then use simulation to validate the

analytical model.

3.2 Current Existing Network Simulators

A network simulator can be either a general-purpose simulator or a special-purpose
simulator. A general-purpose simulator consists of a wide range of possible
simulations, whereas a special-purpose simulator targets a particular area of research
[BRESLAU]. This section reviews a number of major network simulators, describing

their features, advantages, and disadvantages.

3.2.1 INSANE

The Internet Simulated ATM Networking Environment (INSANE) [INSANE] is a
network simulator designed to test various types of IP-over-ATM algorithms with
realistic traffic loads derived from empirical traffic measurements. INSANE’s ATM
protocol stack provides real-time guarantees to ATM virtual circuits by using Rate
Controlled Static Priority (RCSP) queuing. ATM signaling is performed using a
protocol similar to the Real-time Chanrel Administration Protocol (RCAP).

The simulated TCP impl ion performs connection management, slow start,

flow and congestion control, ission, and fast r its. Various application
simulators mimic the behavior of standard Internet applications to provide a realistic
workload including telnet, ftp, WWW, real-time audio and real-time video. The
simulation core and primitive objects are implemented in C++. Its scenarios are
created using TCL scripting language. INSANE is designed to run in a large

simulations environment and its results are processed off-line.

Advantages

* Although simulations are all sequential processes, INSANE works quite well on

distributed computing clusters.

27

Disadvantages

e INSANE only runs on UNIX-based platforms.

* Not a user-friendly environment.

e The GUI of INSANE does not provide other features related to the creation of the
simulation environment.

* Output performance can only be viewed in text.

3.2.2 OMNET++

Objective Modular Network Test bed in C++ (OMNET++) [OMNET] is a discrete
event simulation tool. This simulator is designed to simulate computer networks,
distributed systems and multi-processors. This simulation tool is developed on Linux.
It works well on most UNIX systems and Windows platforms.

OMNET++ has an execution environment that supports interactive simulation

including the visualization of collected data. Besides that this simulation has a GNU-

based GUI tool, which is used for analyzing and plotting simulation results.

Advantages

e Users can build hierarchical and reusable models easily. The -interface is human
readable. Its source code is provided.

e OMNET++ has a solid and flexible simulation kernel. It provides a powerful GUI
environment for simulation execution.

Disadvantages

o Users require knowledge in C or C++ programming languages to use OMNET++.

e In order to simulate the network, users need to use the command line.

28

3.2.3 OPNET

OPtimised Network Engineering Tool (OPNET) [OPNET] is a discrete event network
simulator. The OPNET Modeler was introduced in 1987 and developed at MIT. This
simulator supports signaling; call setup and teardown, segmentation and reassembly

of cells, cell transfer, traffic r and buffer

Its actual network structure and network cormponents are built from graphical editors
using object oriented modeling approach. Each component’s behaviors are specified

with a state transition diagram.

Advantages

e OPNET is able to model complex network topologies with unlimited sub-network
testing within its hierarchical network models.

e OPNET can be used to simulate the dynamic nature of networks, protocols and
their interaction, to develop new or optimize existing protocols, to analyze the
performance of network systems and to explore new technologies and their
impacts on networks.

e OPNET supports modeling of mobile and satellite networks.

e OPNET includes a numbers of comprehensive library of detailed networking

protocols and application models.

Disadvantages
e The OPNET Modeler is not fully platform independent as it only supports the

Solaris, Window NT/2000, and HP-UX operating system.

o From a financial point of view, the use of OPNET Modeler for research is costly.

29

3.2.4 PARSEC

Parallel Simulation Environment for Complex Systems (PARSEC) [PARSEC] is a C-
based discrete event network simulator. PARSEC represents a set of objects in the

physical system as logical processes.

Advantages

e PARSEC provides powerful message receiving constructs that results in shorter
and more natural simulation programs.

e PARSEC is able to execute the simulation model either sequentially or in parallel
by using several different asynchronous parallel simulation techniques.

e PARSEC also includes debugging facilities and a front-end for visual

specification of the simulation model and runtime output.

Disadvantages

e The entire simulation process involves the use of the command line without a
GUL
e PARSEC is less portable among different platform.

3.2.5 REAL Network Simulator

The REAL network simulator [REAL] is a network simulator designed for testing
congestion and flow control mechanisms. This simulator is for studying the dynamic
behavior of flow and congestion control schemes in packet switch data networks.
This simulator provides users with a way of specifying such networks and to observe

their behavior.

30

Input to the simulator is a scenario that is a description of network topology,
protocols, workload and control parameters. It produces output statistics such as the
number of packets sent by each data source, the queuing delay at each queuing point,

the number of dropped and retransmitted packets and other similar information.

Advantages

REAL provides a flexible test-bed to study the dynamic behavior of flow control
and congestion control schemes in packet switch data networks.

Users can modify the simulator source code to accommodate network

components.

Disadvantages

e Users must have strong knowledge in C programming language.
o No graphical user interface (GUI) representation capabilities.

¢ Not a cross-platform simulator.

3.2.6 NIST ATM/HFC

The NIST ATM/HFC network simulator [NIST] was developed at the National
Institute of Standards and Technology (NIST). This simulator provides a flexible test
bed for studying and evaluating the ATM performance and HFC network without the

cost of building a real network.

This simulator is written in C Structural Programming Language. NIST ATM/HFC
gives users an interactive modeling environment with GUI that provides the user with
a mean to display network topology from defined parameters and connectivity of the
network, log data from simulation run, and to save and load the network
configuration.

31

[Asin40080_|

PERPUSTAKAAN UNIVERSIT! MALAYA

Advantages

This simulator has a well-defined message passing mechanism based on the
sending of events among simulation components, which is handled by an event
manager.

This simulator allows users to create different network topologies.

Users are allowed to adjust the parameters of each component’s operation,
measure network activity, save or load different simulation configuration and log
data during simulation execution.

Provides graphical user interface (GUI).

Provides various instantaneous performance measurements displayed in graphical

or text form on the screen while the simulation is running.

Disadvantages

Users might face the network topology set up problems due to the requirement to
consider a large number of parameters.

This simulator lacks portability between different platforms because the simulator
relies on the X Window System for its GUIL It can only run on UNIX or Linux
platforms.

For users and programmers, a strong foundation in C programming language is

needed to customize and understand the simulator’s components.

3.2.7 NS-2

NS-2 [NS] is a discrete event network simulator targeted for networking research.

NS-2 provides substantial support for simulation of TCP; routing and multicast

protocols over wired and wireless (local and satellite) networks. This simulator is

32

derived from the REAL network simulator. Currently, this simulator is supported by
DARPA through the VINT project. This simulator is written in C++ for its core, and
simulation scenarios are designed using the TCL scripting language (or OTcl for NS-
2).

Advantages

e NS-2 allows simulation with multiple levels of abstraction, where higher
abstraction levels trade off accuracy for performance.

e NS-2 measurements do not impact the network by adding extra traffic.

e NS-2 includes a network emulation interface that permits network traffic to pass

between real-world network nodes and the simulator.

Disadvantages

e Although NS-2 has a network animation tool that provides network visualization
features, but it does not have a GUI for general simulation manipulation and

scenario set up.

3.2.8 DELSI

DELSI (Delphi Simulation) [DELSI88] is a discrete-event simulation tool. It's
purpose is to simulate the queuing of systems with complicated logic. Based on
Piecewise Linear Aggregate Simulation Architecture, DELSI is implemented as a set
of components for Borland Delphi [DELPHI99] 3.0 and 4.0. DELSI’s internal
simulation logic has been optimized for high loading that is for use with a large
number of transactions in the model. The model’s logic is implemented using Delphi

event handling. The development of DELSI within the Delphi RAD allows users to

33

combine DELSI with other components, which include GUI design, report building

and databases.

Advantages

o DELSI can be combined with other components within the Delphi Rapid
Application Development platform.

e DELSI is also very capable of handling a large number of transactions in the
model.

e DELSI includes GUI for designing and the building of reports and databases.

Disadvantages

* Due to DELSI’s origins as commercial simulation software, its actual building
components are not clear to users or programmers.
* DELSI's use is limited only to the Borland Delphi tool - a tool not widely used in

the industry and not portable to other platforms.

3.2.9 UMJaNetSim

The UMJaNetSim [UMJANETSIM] network simulator is a flexible test bed for
studying and evaluating the TCP with IP network performance without the expense of
building an actual network. This simulator is written in JAVA Language whereby it
is developed in an object-oriented programming approach. This simulator is a tool
that gives the user an interactive modeling environment with a graphical user
interface, which provides the user with a means to display the topology of the
network, define the parameters and connectivity of the network, log data from

simulation runs, and save and load the network configuration.

34

Advantages

e Better graphical user interface (GUI), which provides a user-friendly environment.

¢ Output performance can be viewed in text and graphical representation on the
screen while the simulation is running.

® Users are allowed to create different network topologies.

e Users are allowed to adjust the parameters of each component’s operation,
measure network activity, save/load different simulation configurations and log
data during simulation execution.

¢ UMlJaNetSim has a high portability among the various platforms and is readily
web-enabled by using an applet version of the simulator.

o Users can add in new components without affecting the whole simulation as it is
written in an object-oriented programming approach.

e The UMJaNetSim API simplifies component development and shifts the
development effort to the actual research focus rather than general simulation

management.

Disadvantages

o This simulator is not web-enabled for the application version of UMJaNetSim

 This simulator requires a lot of memory processing space during simulation.

3.2.10 Summary of Existing Simulator

To summarize, all the simulators that we have discussed have their own advantages
and weaknesses in terms of platform independence, network research focusing area,
simulation techniques, the programming approaches and the availability of graphical

user interface.

All the simulators that have been studied here are discrete event simulators. There is

no web-enabled simulator yet today. Table 3.1 gives a comparison among these

35

simulators in terms of object-oriented, graphical user interface (GUI), multithread and

platform independence.

Table 3.1 shows that all of these simulators are not platform independent except
UMJaNetSim. Most of the network simulators are written in object-oriented
programming language. Only UMJaNetSim and OMNET++ have a good graphical
user interface (GUI).

Object Platform
Simulator Oriented GUI Multithreaded | Independence
INSANE Yes Poor Yes No
OMNET++ Yes Good No No
OPNET Yes Normal No No
PARSEC No Poor Yes No
REAL NS No Poor No No
NIST ATM/HFC No Normal No No
NS-2 Yes Normal Yes No
DELSI Yes Normal No No
UMJaNetSim Yes Good Yes Yes

Table 3.1 Comparison of Simulators

36

3.3 Programming Technique

This thesis will use the UMJaNetSim network simulator to develop and to test

NewReno. In order to develop a new component for a network simulator, the

appropriate programming | progr ing tools and progr ing approach
need to be selected. This section will discuss in terms of each of the programming
approaches and reasons behind the programming language chosen to develop the new

network simulator component.

3.3.1 Approach

There are several programming approaches for developing a network simulator.
These include procedural approach, structural approach and object-oriented approach.

They are widely used in developing a network simulator (refer Table 3.1).

3.3.1.1 Procedural Approach

The procedural approach makes use of procedural languages. Each program code is
place into blocks. Each block is referred to as a procedure or a function. A function
or procedure is coded in such a way that it will perform a certain function. In some
occasions it may return a value. Examples of procedural programming languages are
C, FORTRANS and Pascal.

Normally, a programmer writes a procedural-based program using the “from start to
end” technique. The programmer must be clear of what he wants at the beginning of
the coding. After completing a program, if the programmer intends to make or add a
component he has to restructure the program so this approach is not suitable for
developing a network simulator because although it has the same function name, the

function definition are different, between components.

37

3.3.1.2 Structure Programming Approach

In the structure programming approach, before writing a single line of coding, the
programmer has to design the program completely. In this case, a large amount of
schematics, flow charts and other tools to document each interactive function and

each piece of data flow are needed to develop a program.

The main idea of the structured-based programming is the division of tasks. A
program might be a complex task but this task can be broken down into a set of
smaller tasks. This division can continue until the tasks are sufficiently small and

self-contained enough to be understood.

This approach is suitable for complex problems. It needs an experienced programmer

to design the program structure carefully before the commencement of coding.

3.3.1.3 Object-Oriented Programming

Object Oriented Programming [JAVA] is a dominant programming paradigm. It has
replaced structured procedure based programming techniques since the early 1970s.
Object-oriented programming utilizes performs the concept of encapsulation,

inheritance and polymorphism.

Encapsulation is used to combine data and behavior in one package while hiding the
data implementation from the user of the object. Every object is associated with a set
of properties and a set of methods. The data or properties are called instance variable

or fields. The methods are referred to as the object operation.

Inheritance is a concept of the properties’ inheritance and the definitions of parent
class to child class. When a programmer creates an object class he does not need to
recreate certain classes again as he can inherit its properties from its parent class. For
example, when creating a Proton Wira car object, the programmer can inherit car
object (parent class) properties to the Wira car object. This action increases the speed

of development. It also ensures an inherent validity to the defined subclass object.

38

Inheritance is the inheriting of the functionality of the parent classes to the smaller

components. This concept is very useful in building a network simulator.

Polymorphism is the ability of objects of different classes related by inheritance to

respond differently to the same function call. This is useful in creating a network

simulator framework because the core engine only i with various

well-defined network interfaces; each component behaving in its own in the same

function call.

In traditional structured programming, the algorithm would come first followed by the
data structure. This means that this programming method requires designing a set of
functions first before identifying the appropriate ways to store the data. This limits
the way programmers work as they have to structure the code first. Object-oriented
programming is the reverse. It puts data structure first before looking at the algorithm

that operates the data.

The main benefits of Object-oriented programming (OOP) are as below:

o Simplicity — OOP is simple and intuitive

¢ Maintainability and Reusability — It is easy to maintain and modify the existing
codes. New components can be created with slight differences from the existing one.
¢ Modifiable - OOP provides a good framework for code libraries, where supplied
software components can be easily adapted and modified by the programmer

* Modularity — OOP is good for defining abstract data types where implementation
details are hidden and the unit has a clearly defined interface.

o Extensibility - OOP lets the programmer to extend the functionality of each

simulator by adding more classes without affecting the core of the system.

3.3.2 Java

Java [JAVA] is a platform-independent language and operating system. Java was

developed by Sun Microsystems. Java is written in Java language that is both a

39

programming language and an environment for executing programs. Traditional
compilers convert source codes into machine-level instructions but the Java compiler
translates Java source codes into instructions that are interpreted by the runtime Java
Virtual Machine.

Java progr: ing language has the ad ges below:

e Simplicity — The fundamental concepts of Java, based on the object-oriented
paradigm are simple and intuitive. It is often thought of as a C++ minus the
“‘complexity and ambiguity” plus “security and portability”.

* Object-oriented ~ Java is an Object-oriented language. Most of the properties in
Java is object-oriented.

¢ Robust - Java is a reliable program emphasizing on early checking for possible
problems, dynamic checking and eliminating errors. Pointer models of Java
eliminates the possibility of overwriting memory and corrupting data.

e Platform Independent — Java programs are able to run on any platform, such as
UNIX, Windows and other Operating System environment, in a network. The
programs are compiled into Java byte codes that can be run in a network on a Java
virtual machine, which may be a server or a client.

* Multithreaded ~ In Java language and runtime environments, Java supports
multiple and synchronized threads.

* Architecture neutral - In Java runtime system, Java compiled codes are executable
on different processors and different operating system.

e Security - Java does not use pointers to directly reference memory locations, like
C++ and C. Java controls existing codes within the Java environment. Java’s

robustness focuses on security.

3.3.3 Tool

To make use of the Java programming language, the use of language tools is needed.
These tools consist of necessary functional, aids for Java programming, such as

debugger, and libraries. The next sub section will discuss the three most popular tools

40

in developing Java application. These are Visual Age, Visual J++ and Borland’s
JBuilder.

3.3.3.1 Visual Age

The VisualAge for Java product is IBM’s integrated development environment (IDE)
for Java developers. This Java tool is used-for creating e-business applications that
targets the IBM WebSphere software platform. VisualAge for Java allows

transforming existing applications for the Web.

This Java tool has such advantages as improving interoperability with other tools;
easy to use in which it has a consistent framework and a unit test environment that
provides a fast way to develop, test and deploy end-to-end e-business applications;
scalable data solutions, and Java is an OOP that has the inheritance feature. This

feature allows data and method of other class as to be used.

3.3.3.2 Visual J++

Microsoft Visual J++ is an integrated Windows-hosted development tool for Java
programming. This tool is used to create, compile, modify, debug and run a Java
program. Visual J++ is built around the Developer Studio, Microsoft’s common

development environment.

This Java tool has the advantage of providing GUI in the development environment,
e.g. Java’s Abstract Window Toolkit (AWT). This AWT package is used to create
visual components on the user’s screen. Examples of visual components are Frame,

Button, List, Text Area and Text Field.

41

3.3.3.3 Borland’s JBuilder

Borland JBuilder Enterprise version 4.0 is one of the tools for those who want to
develop the TCP NewReno network simulator component to enable cross-platform
development and to enable web-based deployment. JBuilder 4.0 uniquely delivers the

key features required for productive Java development including:

¢ JBuilder 4.0 can be used in Window-based platform as well as UNIX-based
platforms

» Component Wizards and designers for creating reusable JavaBeans library and
Enterprise JavaBeans

* Support for the Java 2 platform to deliver the most reliable, scalable and preferred
Java solutions

* Visual tools and reusable components for rapidly creating platform independent

Java applications, servlets and applets.

3.4 Chapter Summary

This chapter covered Computer Simulations, Simulation Models and Simulation
Approaches. Three categories of simulation approaches were discussed being Monte

Carlo, Continuous and Discrete Event categories

The features, advantages and disadvantages of the current existing network simulators

was discussed.

Three Approaches to Progr ing Techni was briefly di d. They are the

Procedural Approach, the Structure Programming Approach and the Object-Oriented
Programming Approach. After comparisons were made, the Object-Oriented
Programming approach was deemed the most suitable approach to use in developing

the network simulator.

42

Java tools such as Visual Age, Visual J++ and Borland’s JBuilder were also

discussed.

The TCP NewReno components will therefore be developed using the object-oriented
approach. These components will be incorporated into the existing UMJaNetSim v
0.5. The JBuilder 4.0 will be used as the tool to develop the TCP NewReno
simulator. The next chapter will discuss the UMJaNetSim architecture as well as the

TCP NewReno architecture.

43

