Chapter 4 UMJaNetSim

This chapter provides an indepth description of the UMJaNetSim v0.5 network
simulator. The first section of the chapter begins with the overview of the
UMlJaNetSim architecture and the UMJaNetSim Application Programming Interface
(API). The aim is to provide an explanation of the UMJaNetSim architecture so that
extra components can be easily integrated into the existing simulator. The second

section describes UMJaNetSim features. The final section summarizes this chapter.

4.1 UMJaNetSim Architecture

UMJaNetSim [UMJANETSIM] is a flexible test bed for studying and evaluating the
performance of a TCP network without the cost of building a real network. The
simulator is written in JAVA Language and is developed via the object-oriented

programming approach.

Figure 4.1 shows the overall architecture of the UMJaNetSim. It consists mainly of
two parts: the simulation engine and the simulation topology. The simulation engine
is the main controller of the entire simulation. It handles two major management tasks
of the simulation, which are the event management and the GUI management. The
simulation engine also handles the input/output processes (e.g. save the topology to a
disk file) and provides many tools that help the simulation process. The simulation
topology consists of all the simulation objects, which are also referred to as simulation
components. These simulation components are the main subject of a simulation
scenario, and they typically consist of a group of interconnected network components

such as switches, physical links or source applications.

44

Simulation Engine Simulation Topology
Event ¢ > Simulation
Management Component
GUI .’ >
Management
1/0 & Misc. <> Simulation
Tools Component

Figure 4.1 UMJaNetSim overall architecture

4.1.1 Event Management Architecture

Figure 4.2 shows the event management architecture for the UMJaNetSim. The major
object of the entire application is a JavaSim object, which itself represents the
simulation engine. The JavaSim object manages an event queue, an event scheduler,

and a simulation clock.

45

Simulation Clock
(SimClock) -

T

v

Simulation
Component
(SimComponent)
Enguéu nvoke

Event
Scheduler

Event Queue &~
(SimEvent) >

r vm“s Simulation fivoke
q Component

(SimComponent)

?

A 4
Simulation Engine
(JavaSim)

Manage Manage

Wi

Figure 4.2 UMJaNetSim event management architecture

Typically, the simulation engine interacts with the simulation topology (consisting of

all the simulation components) through two operations:

* A simulation component schedules an event for a target component (which may
be the source component itself) to happen at a specific time using the enqueue
operation.

¢ The simulation engine invokes the event handler of the target component when the
specific time is reached. The target component will then react to the event

according to its behavior.

The event queue is actually a java.uril. List object consisting of all the scheduled

events in the form of SimEvent objects. The events are sorted by the event-triggering

46

time. The event scheduler always fetches and removes the first event in the event

queue, and triggers the event by invoking the event handler of the target component.
4.1.1.1 The Simulation Time

In a discrete event type of simulation, the simulation time is an important concept.
The UMJaNetSim uses an asynchronous approach of the discrete event model, where
any event can happen at any time, up to the precision allowed by the granularity of the
simulation clock. The simulation time in the UMJaNetSim is based on “ticks”. The
duration of a tick is configurable in the simulator. By default, a tick is equivalent to 10
nanoseconds. The SimClock object is the global time reference used by every
component in the simulation and managed by the simulation engine. The SimClock

object also provides helper methods for the conversion between real time and the tick.

4.1.2 GUI Management

Figure 4.3 shows the Graphical User Interface (GUI) management components of the
UMJaNetSim. GUI management involves drawing the viewing area, managing
various on-screen windows (or dialog boxes), and handling user inputs (e.g. menu
commands). The JavaSim object is the overall controller for GUI management. A
helper object called SimPanel handles the detailed task of drawing the topology view
of the simulation components. The SimPanel keeps track of the latest set of simulation
components and the interco‘nnection among. the components in order to present the
simulation topology visually to the user. It also handles any direct component
manipulation by users such as positioning of the components. Figure 4.4 shows a
screenshot of the UMJaNetSim with the SimPanel (in the center) showing the

simulation components.

47

Simulation Engine
(JavaSim)

GUI Helper
(SimPanel)

Simulation
Topology View

User
Commands

A

Meter
Dialogs

Parameter
Dialogs

Custom
Dialogs

Custom
Dialogs

Visible Area

Figure 4.3 UMJaNetSim GUI management structure

IPTCP_topology2. sample M =] B3
File Edit Tools Window Help

e~
PR

=

[start][Reset || Connoct Mode ||7ruu>|| Test | [0z

Figure 4.4 UMJaNeiSim Screenshot (SimPanel)

48

Simulation information other than the topology view is displayed through on-screen
dialog boxes (hereafter referred to as dialogs). Two primary types of dialogs are the
parameter dialogs and the meter dialogs. Figure 4.5 shows the UMJaNetSim with two
invoked parameter dialogs. Each simulation component is associated with a parameter
dialog, which lists all its external parameters. External parameters are properties of a
component that are meant to be viewable or editable by the users. For example, the
transmission rate of a traffic source compoment may be configurable by the user, and
therefore it is shown as an external parameter in the parameter dialog of this

component. The UMJaNetSim allows ample flexibility in representing these external

s, through a i base object called SimParameter (see Section 4.2.3).
Z =
|Flle_Edit_Tools Window =
[|CJ[]|BitRate MBitsss) 1.0 2
[[]| Buffer size (bytes) 1000000
: i) EE— % 1000000
(711 Bit Rate (MBits’s) i 10 |= g0
10| Buffer size (oytes) 1000000 | g
11| start time usecs) 1000000 |{Z{P) || O
10| Transmission size (tytes) 200000 gl
[117]| Mean packet processing time (uSec) 0 L2284 000
1] Packet processing time variation (uSec) || 0 2] {bien Fono iy
111 Max segment size (octets) 512 0t
][] | My Receive Window Size (octets) 64000
11 TCP Version NewReno v
(][] | Timer granu. in us (e.g. 100000,500000) || 1.0 ©
| start || Resat || connectmose |[mtau |[Test |[ow00v000]

Figure 4.5 UMJaNetSim Screenshot (Parameter Dialogs)

Each external parameter may be associated with a meter dialog. A meter dialog is
normally used for the graphical display of a particular output value of a component.

For example, the current utilization percentage of a network link can be displayed as a

49

graph with the x-axis as time and the y-axis as percentage value. This graph is then
constantly updated throughout the execution of the simulation. The ability to present
an output visually can be very helpful for instant analysis of the output. Figure 4.6

shows some meter dialogs displaying real-time graphs of simulation information.

&4 JaNetSim - IPTCP_topol
|File Edit Tools Window Help

sample

ggn’lm Sender ALK

|

0.000ms
s

[E3IPTCPT - Sender sequence number logging B3

0.000ms 2592.885ms. Tl

[Fasumol | [noss || comecthode | [ruan [oot | [amonons

Figure 4.6 UMJaNetSim Screenshot (Meter Dialogs)

In order to ensure full extensibility of the simulator, each parameter dialog or meter
dialog can create and maintain one or more custom dialogs. These custom dialogs
may be used to show extra information about the simulation in question. Figure 4.7

shows a custom dialog displaying custom simulation results.

50

Switches 2SR AF4 i 7 |
Name_[CellLoss .| Uink _|PeakLink Name _[ovg. EZE dola.[Peak E2E deL] Commit%
+- + T 1 2 lbat_a17 6879 44003 100.000 &
Linkid 198.656 37833 . } . T
1 1 vbr_a18 7.394 154.081 99.701
o —haaie 83140 I leaCere loan 20811100000 E
loLink12 775366 20622 = =
LSR15 0000 [Limks17 100038 53277 |AF3.
[Links18 199,905 134847 Name E2 dola.[Peak EZE del.] Commit%
[o] I joLink18 74359 20581 bat b17 1976 |118.168 199.930 |
ILSR16 0697 Links14 100038 52781 r_b18 6833 275833 99934
ey lLinks11 1100038 71671 bat_b18 5049 51.062 99.977
A lnki4 84543 33820
,g["‘::“n ;g“‘gs‘ ;2 :;: . [Peak E2€ del.]_ Commit %
(Y [Lmkmz 100064 [60.110° bat_c17 111,805 1198593 1100.000
: Links 13~ 100,038 :15007 r_c18 ‘N 314 434241 98.421
LsR17 10024 loLimki1 (79871 34182 batcis _[15.08¢ podas 88054
i |Links14 1100.038 61855 1
| |Links15 67785 128716 Name E2E dela..|Peak E2E del.] _Commit%
LSR8 0166 (OLinké |67.768 35065 balo17 66087 1428362 89216 =
! Links16__84.832 32558 r_d18 8.669 280526 le9.352
|Links15 1!00 038 133679 [Sibat 18 32083 1467657 93189 ~
5 ____DE Applications
[Name_[ci
1100.000 70 (11277 (09993 |Mlbat 617 1221.680 15016373 84189
cbrate 100000 2331 (9125 (99994 618 (99768 6200403 91924
cbr’b18 1100.000 [1.963 62 (99999 [vfoate1s 51679 4322687 17117 |

Figure 4.7 UMJaNetSim Screenshot (Custom Dialog)

The UMJaNetSim GUI takes advantage of the object-oriented nature of Java to allow
virtually unlimited combinations of various input and output manipulation. This
structure is simple in nature but at the same time allows a very high level of flexibility

and extensibility.

4.1.3 Simulation Components, Parameters and Events

The primary simulation objects in the UMJaNetSim are called simulation
d by a SimCi
objects are SimC¢

components, each rep object. From the point of view of

This is another

the simulation engine, all
example of the advantages of object inheritance and polymorphism. The
SimComponent is a well-defined base object with all the necessary interfaces that
enable the interaction between the simulation engine and the component. Actual

simulation components inherit the properties and methods of this base object, or in

51

Java terms, they are objects that “extend” this base object. In the SimComponent, the
proper methods can easily modify the default interaction with the simulation engine
(e.g. the component graphical image). With this, the component designer needs not be
concerned with the issues of “talking” to the simulation engine, instead, the focus is
on the design of the proper behaviors of the components to achieve the simulation

objectives.

In order to allow configuration of component properties and display of simulation
outputs, a SimComponent must expose a set of external parameters as stated in
Section 4.2.2. Each of these parameters is an object, again, derived from a base object
called SimParameter. The SimParameter object has well-defined interfaces that the
simulation engine can interact with it. For example, any parameter that contains a
numerical value can be displayed through a meter dialog without any programming
effort from the component designer, because the appropriate mechanism to connect to

ameter dialog is already built in.

The event scheduler invokes an event handler in every simulation component in order
to trigger an event. In fact, this event handler is simply a well-defined method
(action()) in the SimComponent that accepts a SimEvent object as its parameter. The
SimEvent object has the complete description of an event including the event ID, the
source component, and the optional parameters that come with the event. All
components should override the action() method in order to react to events. All
interactions between simulation components are achieved through the sending of
messages in the form of a SimEvent. Refer Section 4.1.1 for a description about the

event management architecture of the simulation.

4.2 UMJaNetSim API

In order to provide a consistent way of creating simulation components, an
Application Programming Interface (API) is developed for the UMJaNetSim. The
API focuses on defining well-known interfaces for simulation objects (SimEvent,

SimComponent and SimParameter). Additionally, the API also defines essential

52

services that the simulation engine provides. The discussion of the UMJaNetSim API

will provide insights into some design issues of the simulator.

Before the discussion of individual simulation object’s APIs, a look at the dynamic
aspect of the simulator is in order. The UMJaNetSim utilizes the run time object-
linking feature of Java through the use of the Reflection API[SUN]. This means that
at the simulation compile time, the simulation engine actually does not know about
the possible simulation components that may be used. A single class, the SimProvider
class, provides IDs associated with these components, the names of the components
and the event. This feature allows the distribution of (possibly third-party) simulation
components without the need to recompile any of the code except the small

SimProvider class that lists all the components involved.

4.2.1 Simulation Events (SimEvent)

A SimEvent object fully describes a-particular event that is invoked on a target
component. It contains an event ID, the source and destination component, the time
for that event, and possibly a set of additional parameters describing the event. The
UMlJaNetSim takes advantage of the Object [] array for passing of parameters to

allow virtually anything to be passed through the event.

An event can be either public or private. A public event is an event passed between
components of different types. A private event is an event passed between
components of the same types, normally for a component itself. Public event IDs are
globally significant, and need to be defined in the SimProvider class. Private event
IDs are only locally significant, and therefore do not require global definition.

Constructor:

SimEvent (int aType, SimComponent src,SimComponent dest,
long aTick,Object [] params);

Access methods:

53

int getType():
//retrieve the event type

SimComponent getSource();
//retrieve the source SimComponent

SimComponent getDest();
//retrieve the destination SimComponent

long getTick();
//retrieve the event-firing time

Object (] getParams();
//retrieve the event parameters

4.2.2 Simulation Components (SimComponent)

The SimComponent object is the most important object in the simulator from a
component designer’s point of view. Every simulation component must inherit this
base class in order to obtain the capability to interact with the simulation engine. In
order to support a large variety of simulation components, every component must
have a class (not to be confused with Java class) and a type. Each component class
has a class ID and each component type has a type ID. These IDs are defined together

with the component names in the SimProvider class (see Section 4.2).

Every SimComponent has a reference to the main object of the simulation engine, the
JavaSim object in order to access services provided by the simulation engine. Every
SimComponent also maintains a list of all its external parameters (in the form of

SimParameter objects) and a list of all its neighbors.

The neighbors of a component are all components that are directly connected to the

component. For example, a network link component will most possibly have two

neighbors, rep ing two comp at the two ends of that link. A
SimComponent interacts with the simulation engine by telling it about eligible
neighbors (components that can be connected), while the simulation engine will

signify the component when a user connects an eligible component to it.

54

Constructor:

SimComponent (String aName, int aClass, int aType,
JavaSim aSim, Point loc);

Important field:

protected transient JavaSim theSim;
//a reference to the main JavaSim object

protected java.util.List neighbors;
//a list of all (directly connected) neighbors
//of the SimComponent

protected java.util.List params;
//a list of all external parameters of the SimComponent

Neighbor Operations:

boolean isConnectable (SimComponent comp) ;
//this is called by the simulation engine when a new
//component is about to be connected to this component.
//The simulation engine queries the eligibility of
//a component to become a neighbor through this method.

void addNeighbor (SimComponent comp);
//this is called by the simulation engine when a new
//neighbor is connected to this component.

void removeNeighbor (SimComponent comp);
//this is called by the simulation engine when a
//neighbor is disconnected from this component.

void removeNeighbors(java.util.List comps) ;
//this is called by the simulation engine when a
//group of neighbors is disconnected from this
//component.

4.2.2.1 Instant Information Passing

The UMlJaNetSim uses a consistent way for interaction between simulation
components through the passing of events. There is another way of information
passing between components without the need to schedule an event. This “instant”
passing of information is not used to simulate component behaviors (it is unrealistic),
but instead it helps to reduce the amount of state information in a component, among
other things. For example, a real network switch has a finite number of ports, each

with a certain link input/output capacity (bandwidth). For simulation purposes, a

55

virtual switch can have an infinite number of ports, where each port can be used for
any types of link. The link information can be obtained during simulation run time by
performing a simple query on the link component using this “instant” information
passing method instead of preparing external parameters that need manual user input
or rely on passing of events. This feature increases the performance and efficiency of

simulations.

Component Information:

Object (] compInfo(int infoid, SimComponent source,
Object [] paramlist);
//This method provides a way for inter-component
//information exchange without sending run time
//events.

4.2.2.2 “Copy and Paste” Support

“Copy and paste” capability is considered a standard GUI feature in modern
applications. This feature is implemented in the UMJaNetSim through the use of a
component-defined copy() method. Every component is responsible for correctly
copying itself through this method. With this method properly implemented, the

simulation engine will perform all other tasks involved in a copy and paste operation.

Copy Operation:

void copy (SimComponent comp) ;
//This method is used to copy parameter values from
//another SimComponent of the same type.

4.2.2.3 The Event Handler

The most important method for event handling is the action() method. Additionally, in
order to support detailed simulation execution flows, other handler methods are
needed. These include the reset(), start() and resume() methods. In order to emphasize
the actual component behavior processing in the action() method, the methods
involving interaction with the simulation engine are separated in the UMJaNetSim,

hence these additional methods.

56

Event Handlers:

void reset();
//Override this to perform a reset operation in order
//to bring the status of the component back to the same
//status as if it were just newly created.

void start();
//Override this to perform any operations needed when
//the simulation starts (the user clicks the “Start”
//button) -

void resume();
//Override this to perform any operations needed when
//the user clicks the “Resume” button after a pause.
//One possible use is to capture any special changes
//that have been done by the user during the pause
//period.

void action(SimEvent e);
//This is the event handler of this component, and will
//be called by the simulator engine whenever a SimEvent
//with this component as the destination triggers.

4.2.3 Component Parameters (SimParameter)

As stated in Sections 4.1.3 and 4.2.2, every simulation component must maintain a set
of external parameters. In addition to these external parameters, a typical component
normally has many properties that are internal to it such as those needed to maintain
the state of the component. All parameters that need user intervention (e.g.
configurable property of the component), output display and logging to a disk file
should be implemented as external parameters.

The SimParameter is the base class for all external parameters. It provides the
necessary mechanisms to interact with the simulation engine, including the support of
displaying output values in meter dialogs (Section 4.1.2) and the logging of values to

a simulation log file. Real time display of values through the meter dialogs provides

ah |

instant fé k about the si ion ¢ while logging of values to a log file

allows more detailed analyses of the simulation results.

One example of the simplest type of parameters is a parameter that simply holds one
single value, such as an integer. This value can represent any properties of a
component that requires an integer value, such as the buffer size of a network switch.
On the other hand, a parameter can represents a complex piece of information, such as
the entire routing table of a network router. Making the routing table an external
parameter enables the user to view this table anytime during the simulation. This
flexible use of component parameters opens up a wide range of interaction methods

with the simulation components without modifying any part in the simulation engine.

Constructor:

SimParameter (String aName,String compName,
long creationTick,boolean isLoggable);
//A parameter the extends SimParameter should include
//additional construction parameters as needed

Access methods:

String getString();
//returns a String representation of the parameter value
//(This is used for logging purpose)

void globalSetValue(String value);
//This is to support setting of the same parameter values
//for multiple components in one command.

Sample access methods of a parameter holding an integer value:

int getValue():;
//read value

void setValue(int val);
//write value

As stated earlier, a parameter can be very complex, and the parameter itself can create
and manage additional custom dialogs (Section 4.1.2). All the parameters are
contained within the parameter dialog as described in Section 4.1.2. The parameter
dialog actually contains a list of JComponent, a generic Swing GUI component. For a
single-value type parameter (like the integer), this component can simply be a JLabel
if it is not editable, or a JTextField if it is editable. A complex parameter type may
just use a JButton that opens up new custom dialogs when invoked. The choice of
components to use is dependent on the type of interaction needed by the component

designer. In general, the reusability of a parameter type depends on how general the

58

parameter is. Certain predefined parameter types (integer, double, boolean etc.) are

general-purpose in nature and are useful in most cases.

GUI access method:

JComponent getJComponent () ;

4.3 UMJaNetSim Features

The features of the UMJaNetSim Network Simulator are summarized as follows:

o Object-oriented. The UMIJaNetSim is fully object-oriented using the Java
programming language, and therefore takes full advantage of the object-oriented
paradigm.

o Simplicity. Based solely on the message passing mechanism between simulation
components, the simulator provides a simple yet powerful way of creating various
simulation environments. This use of the object-oriented approach further ensures
the simplicity.

o Portability. Due to the platform independent nature of the Java programming
language, the UMJaNetSim has high portability among various platforms.
Furthermore, the simulator is readily web-enabled by using an applet version of
the simulator.

o Extensible API. The UMJaNetSim API simplifies component development and
shifts the development effort to the actual network research rather than general
simulation management.

o GUI The GUI of UMJaNetSim includes features that simplify simulation scenario
design and manipulation. These include the ability to copy and paste simulation
components, simultaneous parameter setting for multiple components, and full
state saving/restoration using object serialization. Moreover, the GUI is fully

extensible through the UMJaNetSim API, for example by creating custom dialogs.

59

4.4 Chapter Summary

The first section of this chapter discussed the architecture of UMJaNetSim v0.5,

including Event M. ; GUILM and Simulation Component,

Parameters and Event.

The second section discussed UMJaNetSim Application Programming Interface

(API), such as Simulation Events, Simulation Component and Component Parameter.

The third section discussed UMJaNetSim features. The next chapter describes the
design, implementation and testing of the TCP simulation environment using the
UMJaNetSim.

This thesis will use UMJaNetSim v0.5 as the project network simulator. A new
component, NewReno, will be integrated into this network simulator. Tahoe and
Reno already exists in the simulator. Performance evaluation of these three TCP

versions will be done on the simulator.

60

