Chapter 5 System Design, Implementation and Testing

A TCPIP component is a TCP with IP component. This component has both TCP
features and IP features, which will be explained in section 5.1. In UMJaNetSim
v0.5, this simulator’'s TCPIP component consists of two type of TCP version, i.e.
Tahoe and Reno. This thesis adds an additional TCP version in the UMJaNetSim;

that is NewReno.

This chapter is divided into five sections. The first section discusses on the
component design of UMJaNetSim. A brief discussion on the TCPIP component

class is included. Its class name is called TCPIPApp class.

The second section discusses the TCPIP component implementation. TCPIPApp
class and NewReno's method (it is an OOP function) are also discussed. The network
switch is also briefly tested on the lost segment that is purposely created. The switch
class is called ATMLSR class.

The third section discusses the testing on the TCPIP component simulation. Each
TCP version; including Tahoe, Reno and NewReno; is tested individually. There are
three lost segments created purposely in the switch. The testing is on sender sequence

number and its congestion window (cwnd).

The forth section discusses on the overall network with the same TCP version and a

study on their average throughput is conducted.

Finally, there is a chapter summary.

61

5.1 Object Oriented Design

SimClock

I SimComponennt &
N SimParameter I"I SimMeter
inherit

' | inherit
I ATMLSR | l IPBTE I SimParamInt
*TCPIP

| SimEvent

Figure 5.1 TCPIP Simulator Objects

Figure 5.1 shows the TCPIP simulator objects. There are three child SimComponent
to be considered in this thesis, i.e. the TCPIP component, the IP terminal (IPBTE
component) and the network switch (ATMLSR component). These components will

inherit all the features from the SimComponent (See Section 4.2.2).

The TCPIP component has both TCP and IP features. TCP features are segmentation
of packets and reassembly of packets. It also consists of sender buffers (congestion
window) and receiver buffers (advertise window). In UMJaNetSim v0.5, this
simulator’s TCPIP component already consists of two types of TCP version; they are
Tahoe and Reno. This thesis adds an additional TCP version in the UMJaNetSim;
that is NewReno. The IP feature in this TCPIP component has the destination TCPIP
component’s IP address and port number. With the IP address, the TCPIP component

is able to connect to the destination TCPIP component.

62

In Figure 5.1, the IPBTE component is an IP terminal. This component is used to
connect between the TCPIP component and the network switch. This component is
used to set the [P address. With this IP address, the TCPIP component is able to

connect to the destination TCPIP component.

The ATMLSR component is a network switch. This component is used to route the
packets sent by the TCPIP component to the target TCPIP component. From the
target TCPIP component, acknowledgement packets are routed back to the sender

TCPIP component.

The next section will briefly discuss on the TCPIP component class. This

component’s class is called TCPIPApp class.

5.2 Class Design

This section gives a description on the class designs of the UMJanetsim network

simulator. The properties and the functionality of TCPIPApp class are discussed.

5.2.1 TCPIPApp class

The TCPIPApp class is the class that is used to simulate TCP features with [P. This
class is called when the user selects TCPIP from the menu list. This class must

perform the following function:
o It must let the user predefined TCP features automatically or manually.

o It must allow the user to input the destination [P address, destination subnet mask

and destination port number.

63

Table 5.1 Attributes and Methods of TCPIPApp

Major Attribute Major Methods
TCPIP Name Set TCPIP name
TCPIP version Segmentation packet
Segment ID Process segment
Acknowledgement ID Reassemble packet
Retransmission or timeout Retransmission or timeout

Table 5.1 shows the attributes and methods of the TCPIPApp class. Each TCPIP
component is assigned a unique name. This component consists of three TCPIP
versions, including Tahoe, Reno and NewReno. Segment ID is used to identify the
particular segment when the packet is sent. Acknowledgement ID is used to identify
the particular segment being acknowledged. There is a need to create dynamic
retransmission or timeout attributes.

The major methods are to set the TCPIP comp name, ion of packets,

manipulating the particular version feature in the segment process, reassemble

packets, and calculate retransmission or timeout while the packets are being sent.

5.3 TCPIP Simulator Component Implementation

The following section discusses the implementation for TCPIP simulator components,

especially for NewReno.
5.3.1 TCPIPApp class
The TCPIPApp class is the class for NewReno.

class TCPIPAPP extends SimComponent implements java.io.Serializable(
private static final int TCP_NewRENO = 3;
//define the NewReno

64

5.3.1.1 Process Segment Method

This method is used to determine which algorithm has to apply for the three

consecutive lost how to recalculate the R ission Time-out; how to
process the data while the data is available; and when the lost segment is recovered,
how the traffic is adjusted back to normal (exit fast retransmit and fast recovery). It
can be applied to Tahoe, Reno and NewReno.
Step 1: Determine whether it is Tahoe, Reno or NewReno TCP version
e process_segment() or process_segment2()
Step 2: Determine whether it is a lost segment
If there are 3 duplicate acknowledgements received by the sender
Enter the fast retransmit and fast recovery process
Else
Perform slow start or congestion avoidance

Step 3: Recalculate Retransmission Time-out (RTO)

Jacobson [LEON], in [JACOBSON98] proposed a calculation of RTO

algorithms. Refer section 2.1.2.4.

Step 4: Segment text processing

If data is available at TCP
Inform the user of need for buffers

Step 5: Exit fast retransmit and fast recovery

65

5.3.1.2 Retransmission and Timeout Methods

This method is used to calculate retransmission and timeout attributes while sending
packets and receiving acknowledgements. The first step is to initialize the slow start
theshold (ssthresh) and congestion window (cwnd) size. ssthresh is to determine
whether the sender is in slow start or congestion avoidance mode. cwnd is the sender
buffer size. The second step is to determine whether there are unacknowledged
segments. If there is an unacknowledged- segment, the sender will retransmit the

segment.

Step 1: Reset slow start theshold (ssthresh) and congestion window (cwnd) size

//initialize ssthresh and cwnd size

Step 2: Send lowest unAcked packet

Firstly, establish length to send.

Secondly, calculate upper band of window to send.

5.3.2 ATMLSR class

The ATMLSR class is the class that performs the network switch. This class inherits
the methods and properties of SimComponent (see Section 4.2.2). The following list
is the attribute and methods of this class. The modification, in ATMLSR class, is to

create a lost packet for TCPIP packet flow.

5.3.2.1 Attributes
There are three lost segments created. The attributes used to create these lost

segments are shown below:

class ATMLSR extends SimComponent implements Serializable {

66

PERPUSTAKAAN UNIVERSIT! MALAYA

/lfirst drop packet
private double last_drop_time;
//capturing time for the last drop segment
private double cur_time;

//capturing the current time

//second drop packet
private double last_drop_time2;

//capturing time for the last drop segment
private double cur_time2; .

//capturing the current time

//third drop packet
private double last_drop_time3;

//capturing time for the last drop segment
private double cur_time3;

//capturing the current time

5.3.2.2 Dropping packet Methods

This method is the function for dropping packets in the network switch.

This method creates a dropped packet.

private void sw_my_receive(SimEvent e)

Below is the time capture for creating dropped packets. (Refer Section 4.1.1.1 for the
simulation time)
//set current time
cur_time = SimClock.Tick2Sec(theSim.now());
cur_time2 = SimClock.Tick2Sec(theSim.now());
cur_time3 = SimClock.Tick2Sec(theSim.now());

cur_timed = SimClock.Tick2Sec(theSim.now());

i

Y

it is the first switch

if (cur_time - last_drop_time is greather than 1.2)
//drop first packet
last_drop_time = cur_time;

else if (cur_time2 - last_drop_time2 is greather than 1.6)

67

//drop second packet
last_drop_time2 = cur_time2;

else if (cur_time3 - last_drop_time3 is greather than 2.4)
//drop third packet
last_drop_time3 = cur_time3;

else
//send packet

sw_receive_ip_datagram(cell,voport);
5.4 TCPIP component Testing
The following section discusses the details of the testing.
5.4.1 Testing
The testing, shown in Figure 5.2, is used to test the individual TCP versions, i.e.

Tahoe, Reno and NewReno, for the TCP/IP simulator. The testing will include the

feature testing and the interaction testing.

ATMI SR switch

Receiver (TCPIP)

Figure 5.2 TCPIP component topology

68

Figure 5.2 is the TCPIP component topology used to test the TCPIP components. /sr
and Isr2 are the network switches. bte/ and bre2 are the IP Terminals. tepl and
tcp2 are the TCPIP components. Refer to Section 5.1 for the network switch, IP

Terminal and TCPIP component definitions.

The following are some of the tests that has been conducted:

5.4.1.1 Tahoe component test

Figure 5.3 shows the TCP Tahoe sender time elapsed versus the sequence number.

The simu]ﬁ d thrl segments at the network switch (lsr), which are
labeled as s and 4

&3 tep1 - Sender sequence number logging

0.000ms

3004.309ms

Figure 5.3 Tahoe sender sequence number

69

&5 tcp1 - cwnd in bytes

3004.637ms,

Figure 5.4 Tahoe sender congestion window

Figure 5.4 shows the time elapsed versus the traffic workload in the TCP Tahoe
sender congestion window. Figure 5.4 shows where the sender encountered three lost

segments and how the sender congestion window acted accordingly.

In the beginning, the sender transferred data smoothly. At the same time, the
congestion window increased exponentially. Traffic is in the Slow Start fashion.

Refer to Section 2.1.1.1 for Slow Start and Congestion Avoidance.

When the traffic encountered the first lost segment |I|, Figure 5.4 shows that the
congestion window declined. In the meantime, the sender received duplicate
acknowledgements. The traffic then entered Fast Retransmit. Refer Section 2.1.1.2 for
Fast Retransmit and Fast Recovery.

After the sender received the duplicate acknowledgement, the congestion window

started to grow exponentially. The traffic entered Slow Start fashion again. However,

the traffic encountered the second lost segment Figure 5.4 shows that the

congestion window then declined again. In the meantime, the sender received

70

duplicate acknowledgements. The traffic reentered Fast Transmit. (See section

2.1.1.2)

After the sender received the duplicate acknowledgement again, the congestion
window started to grow exponentially again. The traffic entered Slow Start. This
time the traffic met a slow start threshold . In the meantime, the traffic started

to grow linearly. The traffic entered Congestion Avoidance. (See Section 2.1.1.1)

When the traffic encountered the third lost segment , the figure shows the
congestion window declined again. In the meantime, the sender received duplicate

acknowledgements. The traffic reentered Fast Transmit again.

After the sender received the dupli acknowled the cc ion window
started to grow exponentially again. The traffic entered Slow Start. This time the
traffic met a slow start thresho[d again. In the meantime, the traffic started to

grow linearly. The traffic then entered Congestion Avoidance. (See Section 2.1.1.1)

This figure shown is the expected figure. It fulfills the RFC2581 specification.

7

[tcp1 - Sender sequence number logging

10.000ms 3008.736ms.

Figure 5.5 Reno sender sequence number

5.4.1.2 Reno component test

Figure 5.5 shows the TCP Reno time elapsed versus sender sequence number. The
simulation created three lost segments at the network switch (lsr). In_this ﬁ1urel there
are three lost segments, which were purposely created, shown as 2

an@ ; a lost segment

was caused by timeout.

72

PERPUSTAKAAN UNIVERSITI MALAYA

24 tcp1 - cwnd in bytes

3008.046ms’

Figure 5.6 Reno sender congestion window

Figure 5.6 shows the time elapsed versus the traffic workload in the TCP Reno sender
congestion window. Figure 5.6 shows where the sender encountered three lost
and Iz] ; and one timeout retransmit

, and how the sender congestion window acted accordingly.

segments, which is labled as E“

segment

In the beginning, the sender transferred data smoothly. At the same time, the
congestion window increased exponentially. Traffic is in the Slow Start fashion.

Refer to Section 2.1.1.1 for Slow Start and Congestion Avoidance.
When the traffic d the first lost EI , Figure 5.6 shows that the
gestion window declined. In the i the sender received duplicate

acknowledgements. The traffic entered Fast Retransmit and Recovery. Refer Section
2.1.1.2 for Fast Retransmit and Fast Recovery.

After the sender received the duplicate acknowledgement, the congestion window
started to grow linearly. The traffic entered Congestion Avoidance. Refer to Section

2.1.2.2 for the Introduction of Reno. However, the traffic encountered the second lost

73

segment again. Figure 5.6 shows that the congestion window declined again.
In the meantime, the sender received the duplicate acknowledgements. The traffic

entered Fast Retransmit and Recovery. (See Section 2.1.1.2)

When the sender received acknowledgement of the lost segment, the traffic

encountered timeout for a sent segment. The sender retransmitted immediately the

timed out segment|

After the sender received the acknowledgement of the timed out segment, the traffic
started to grow linearly. The traffic entered Congestion Avoidance. (See Section
2.122)

The traffic encountered the forth lost segmcntm Figure 5.6 shows the congestion
window declined again. In the meantime, the sender received duplicate
acknowledgements. The traffic entered Fast Retransmit and Recovery.

After the sender received the duplicate acknowledgement, the congestion window
started to grow linearly. The traffic entered Congestion Avoidance. (See Section

2.122)

This figure shown is the expected figure. It fulfills the RFC2581 specification.

5.4.1.3 New Reno component test

Figure 5.7 shows the TCP NewReno time elapsed versus sender sequence number.

The simulation created three lost segments at the network switch (Isr). In this figure

there are three lost segments, which were created purposely, labeled 5
;and a lost segment was caused by timeout

Figure 5.8 shows the time elapsed versus the traffic workload in the NewReno sender
congestion window. Figure 5.8 shows where the sender encountered four lost

segments and how the sender congestion window acted accordingly.

74

IE=% tcp1 - Sender sequence number logging

3008.725ms

Figure 5.7 NewReno sender sequence number

Figure 5.8 shows that the sender congestion window started by growing
exponentially. Traffic is in the Slow Start fashion. Refer Section 2.1.1.1 for Slow
Start and Congestion Avoidance. When the traffic encountered the first lost segment
l]. the congestion window declined. At the same time, the sender received three
duplicate acknowledgments. The traffic entered Fast Retransmit and Recovery.
During Fast Recovery, two segments were sent for each additional duplicate

acknowledgment received. (See Section 2.1.2.3) This is to fully utilize the traffic.

75

F2% tcp1 - cwnd in bytes

3009.046ms;

10.000ms

Figure 5.8 NewReno sender congestion window

The second decline E and flat line occurred because the sender sent the same
value of sequence number before it left Fast Recovery and recovered from the lost

segment. The congestion window regained exponential growth.

The second lost was ed. The line d d again. After the

sender received three duplicate acknowledgments, the traffic entered Fast Retransmit

dditional dunli

and Recovery. The sender started to send two for every p

acknowledgment received. (See Section 2.1.2.3)

occurred due to timeout. The
. This

Before exiting Fast Recovery, a lost segment

timed out segment was retransmitted following which there was a flat line

was because the sender sent the same value of sequence number before it left Fast

Recovery and recovered from the loss segment.
After leaving the Fast Recovery, the congestion window grew exponentially.

The forth lost segment ‘Z] was encountered. The line showed a decline again.

After the sender ived three dupli acknowledg the traffic entered Fast

76

Retransmit and Recovery. During Fast Recovery, the sender sent two segments for

led ved

acknow!

every additional d

Figure 5.9 TCP/IP Network Topology Structure

5.4.2 Performance Evaluation of Overall same TCP version
Network Topology

Figure 5.9 shows the TCP/IP Network Topology structure with all TCPIP components
having the same TCP version. ATMLSR~ are the network switches, where r is in the
range of 1 to 5. IPBTEn are the IP Terminals, where n is in the range of 1 to 8.
IPTCPm are the TCPIP components, where m is in the range of 1 to 8. link;j are links
between IP Terminals and the network switchs, where j is in the range of 1 to 12.
Refer to Section 5.1 for the network switch, IP Terminal and TCPIP component

definitions.

77

PERPUSTAKAAN UNIVERSITI MALAYA

IPTCP BTE Source Address Subnet Mask

IPTCP1 BTE1 1111 255.255.255.255
IPTCP2 BTE2 2222 255.255.255.255
IPTCP3 BTE3 3333 255.255.255.255
IPTCP4 BTE4 4444 255.255.255.255
IPTCPS BTES 5.5.5.5 255.255.255.255
IPTCP6 BTE6 6:6.6.6 255.255.255.255
IPTCP7 BTE7 7.71.7 255.255.255.255
IPTCP8 BTES 8.8.8.8 255.255.255.255

Table 5.2 Address Space for TCP with IP component (IPTCP)

Table 5.2 shows the source network addresses and subnet mask for each of the TCPIP
component. The Simulator randomly selects the destination IP address for every

[PTCP. It performed like an actual network system.

IPTCP1 IPTCP2 IPTCP3 IPTCP4
(Bits / Sec) (Bits / Sec) (Bits / Sec) | (Bits/ Sec)
Tahoe 804547 804547 804547 804547
Reno 804685 804685 804685 804685
NewReno 804547 804685 804547 804685

Table 5.3 Overall network IPTCP Average Throughput |

IPTCPS IPTCP6 IPTCP7 IPTCP8
(Bits / Sec) (Bits / Sec) (Bits/ Sec) | (Bits/ Sec)
Tahoe 804685 804547 804547 804685
Reno 804685 804821 804547 804547
NewReno 804685 804822 804685 804685

Table 5.3 Overall network IPTCP Average Throughput 2

78

Average Throughput
(Bits / Sec)
Tahoe 804582
Reno 804667
NewReno 804668

Table 5.4 Overall network IPTCP Average Throughput

Table 5.3 shows the average throughput for each IPTCP component with the same

TCP version.

Table 5.4 is a summary of the average throughput for all TCPIP components with the
same TCP version. Table 5.4 shows that NewReno has the highest average
throughput for overall network IPTCP, followed by Reno and Tahoe. This means that
NewReno has the best transmission among the three TCP versions even though the

network encountered congestion.

Case Study: TCPIP component network Topology

This network topology evaluated the all TCPIP component with the same TCP
version. This network topology fixed every IPTCP with a fixed particular destination
IPTCP. This is to make sure that all three of the overall network topology with same

TCP version has the same topology and same destination.

There were two or three lost segments generated randomly at the ATMLSRI and
ATMLSR4 network switches.

The results showed that NewReno had the highest average throughput among the
three TCP versions, followed by Reno and Tahoe. This means that NewReno is the

best transmission TCP version when the sender encounters congestion.

The details of this testing will be listed in Appendix A Case Study.

79

