TABLE OF CONTENTS

Pre	eface		
	Original Li	terary Work Declaration	ii
	Abstract		iii
	Abstrak		
	Acknowled	lgements	V
	Table of Co	ontents	vi
	List of Figu	ires	viii
	List of Tabl	les	ix
	List of Symbols and Abbreviations		
1.	Introduction	on	1
	1.1 Introduction		
	1.2 Background of the Study		
	1.3 Problem Statement		
	1.4 Goal and Objective of the Study		
	1.5 Scope and Limitation of the Study		
	1.6 Methodology of the Study		
	1.7 Arrang	gement of the Dissertation	6
2.	Literature	Review	7
	2.1 Evolut	ion of Agile Manufacturing	7
	2.2 Implica	ation of Agile Manufacturing	13
	2.3 Enablin	ng Technology of Agile Manufacturing	14
	2.4 Definit	tion of Quality	17
	2.5 Flexible Manufacturing System		19
	2.6 Total Productive Maintenance		21
	2.7 Just in Time		25
	2.8 PDCA Cycle		31
	2.8.1 PDSA Cycle		34
	2.9 Developing a Manufacturing Strategy		35
	2.10 Method and Technique Selected		38
3.	Research I	Design and Methodology	39
	3.1 Introdu	iction	39
	3.2 PDSA	Cycle	39
	3.3 Plan Pl	hase	40
	3.3.1	Company Selection	42
	3.3.2	Company Profile	42
	3.3.3	Project Description	45
	3.3.4	Problem Identification	57
	3.3.5	Define Aim and Objective	62
	3.3.6	Formation of Project Team	62
	3.3.7	Selection of Method and Theory	63
	3.3.8	Impact Assessment	65
4.	Data Collection and Analysis		
	4.1 Introduction		
	4.2 Do Pha	ase	71
	4.2.1	Framework for Data Collection	72
	4.2.2	Data Collection before Implementation	73

	4.2.3	Implementation of Manufacturing System	81
	4.2.4	Data Collection after Implementation	86
5.	Result and	d Discussion	88
	5.1 Introd	uction	88
	5.2 Study Phase		88
	5.2.1	Data Presentation and Analysis of Data	88
	5.2.2	Data Screening	93
	5.3 Act Phase		95
6.	Conclusion		97
	6.1 Conclu	usion	97
	6.2 Recommendation		97
RE	FERENCE	CS	98

LIST OF FIGURES

Figure Title Page Methodology of the study Figure 1.1 5 Figure 2.1 A conceptual model to illustrate the concept and enabler of AM 17 Figure 2.2 **Inventory Hides Problems** 30 Relationship between Lot Size and Setup Cost Figure 2.3 31 Figure 2.4 31 PDCA cycle Figure 2.5 Classification of tools in each section 34 Figure 2.6 PDSA cycle and functions of each phase 35 Figure 2.7 Model for improvement and its 3 question 35 Figure 2.8 **Operations Strategy Framework: From Customer** 37 Needs to Order Fulfillment Figure 3.1 PDSA cycle and the tasks for each phase 39 Figure 3.2 Modified PDSA cycle and the tasks of each phase 40 Figure 3.3 Tasks done in plan phase and their corresponding tools 41 Figure 3.4 46 Organization chart Figure 3.5 Plant layout and the main areas of the plant 47 Figure 3.6 Raw material depot (material tank) and its arrangement of machines 48 49 Figure 3.7 Flow of material in fertilizer processing area 51 Figure 3.8 Schematic diagrams for the GT layout Figure 3.9 Processes of the machines in the GT cell and the flow of material 52 53 Figure 3.10 Conveyor belts of the GT cell 53 Figure 3.11 Weighing machine located below conveyor Figure 3.12 Totalize weighing machine located below conveyor 54 54 Figure 3.13 Mixing machine of the GT cell 55 Figure 3.14 Packaging machine of the GT cell Figure 3.15 Raw material depot of the GT cell 55 Figure 3.16 Three stages involved in the GT cell 56 Figure 3.17 Pareto chart (loss of money value versus issues) in March 58 Figure 3.18 Cause and effect diagram for loss of material and its causes 59 Figure 3.19 Loss of material occurs at raw material depot (stage 1) 60 Figure 3.20 Loss of material occurs at stage 2 61 Figure 3.21 Uneven weight distribution and hill of material 61 Figure 3.22 Pills and stones mixed in the raw materials create 62 uneven weight distribution Figure 3.23 Dusty environments around various machines 66 Figure 3.24 Formation of soil at various machines 67 Figure 3.25 Increase in weight on the conveyor 67 Figure 3.26 Schematic diagram of speed sensor and how it is arranged 68 Figure 3.27 Formation of soil on the roller of speed sensor 69 Figure 3.28 Relationships of cause root and the sub-problems 70 Figure 4.1 Schematic diagram showing framework of data collection 73 and how the loss of material is calculated 79 Figure 4.2 Effectogram for March Installation of feedback and control system (PID) in a 83 Figure 4.3 weight feeder and how it functions 84 Figure 4.4 Installing PID on weight feeder and how the PIDs are arranged in a rack Figure 4.5 Improved totalize weighing machine with PID and how it functions 86 Figure 4.6 Installing PID on totalize weighing machine and 86

how the PIDs are arranged	
OEE and MTBF of 9 months	90
Monthly output for 9 months	91
Loss of material (% per hour) for 9 months	92
Reworked material (tons per month) for 9 months	93
Pareto chart for March and November	95
	how the PIDs are arranged OEE and MTBF of 9 months Monthly output for 9 months Loss of material (% per hour) for 9 months Reworked material (tons per month) for 9 months Pareto chart for March and November

LIST OF TABLES

Table	Title	Page
Table 2.1	Evolution of Agile Manufacturing	12
Table 2.2	Comparison in the Quality Gurus	18
Table 2.3	The Dimensions of Quality	19
Table 2.4	Definition of OEE variables	22
Table 3.1	Corporate information	43
Table 3.2	Team members of the project	63
Table 3.3	Engineering technique or AM system used in the project	63
Table 4.1	OEE of the machines for March, April, May and June	80
Table 4.2	Monthly output, percentage of loss of material per hour, reworked material per month and MTBF for March, April, May and June	81
Table 4.3	OEE of the machines for July, August, September, October and November	87
Table 4.4	Monthly Output, percentage of loss of material per hour, reworked material per month and MTBF for July, August, September, October and November	87
Table 5.1	Data Screening for March and November	94
Table 5.2	Result validation	95

LIST OF SYMBOLS AND ABBREVIATIONS

AM	Agile Manufacturing
ANOVA	Analysis Of Variance
ARPANET	Advanced Research Project Agency Network
BPR	Business Process Reengineering
CAD	Computer Aided Design
CAM	Computer Aided Manufacturing
CE	Concurrent Engineering
CEO	Chief Executive Officer
CFO	Chief Financial Officer
CIM	Computer Integrated Manufacturing
CPM	Critical Path Method
E-Ops	Electronic Operations
EOQ	Economic Order Quantity
FMS	Flexible Manufacturing System
GT	Group Technology
ISO	International Organization For Standardization
JIT	Just In Time
MRP	Manufacturing Resource Planning
MTBF	Mean Time Between Failure
OEE	Overall Equipment Effectiveness
PDCA	Plan-Do-Check-Act
PDSA	Plan-Do-Study-Act
PERT	Program Evaluation and Review Technique
POIC	Palm Oil Industrial Cluster
QFD	Quality Function Development
RE	Reverse Engineering
TPM	Total Productive Maintenance
TQC	Total Quality Control
TQM	Total Quality Management
U.S.	United State
WIP	Work In Process