APPLICATION OF GC-FID AND GC-MS IN THE ANALYSIS OF RESIDUE LEVEL OF PHTHALATE ESTERS ALONG THE KLANG RIVER

MAHESHCHANDAR BIASPAL

SUPERVISOR
ASSOCIATE PROFESSOR Dr. TAN GUAN HUAT

CHEMISTRY DEPARTMENT
FACULTY OF SCIENCE
UNIVERSITY MALAYA
2000 / 2001
ABSTRACT
"Phthalate Esters" ("PEs") are considered as major industrial wastes that can cause pollution in the river water. A study of determination of the PEs in the Klang River water by the application of "Gas Chromatography" ("GC") with "Flame-Ionisation Detector" ("FID") will be carried out in this project. "Mass-Selective Detector" ("GC-MSD") will be used in the identification of phthalates compound. A BP-5 non-polar capillary column will be used for the river water analysis. The river water will first be separated by a liquid-liquid extraction with an organic solvent. The extracts will then be subjected to a clean-up procedure to separate out all the other unwanted organic compounds in the samples. Temperature programming will carry out optimisation of the GC to obtain a good resolution of all the PEs. A spike-in technique will be introduced to the samples to calculate the percentage of recovery of PEs.
ACNOWLEDGEMENT

I would like to thank Assoc. Prof. Dr. Tan Guan Huat and Mr. Siew for their invaluable advice throughout the course. I would also like to thank Dr. Y.Y. Lim and all the Monash University and Sunway College Laboratory Staff for their assistance.
CONTENTS
Table of contents

Abstract

Acknowledgments

Chapter

1. Introduction

1.1. Water Pollution and its effect

1.2. Malaysia and water pollution

1.3. Study of Phthalate Esters (PEs)

1.4. Introduction to Phthalate Esters

1.4.1. What are phthalate esters?

1.4.2. How do plasticizers do their job?

1.5. Health effects due to Phthalates

1.5.2. Carcinogenicity

1.5.3. Reproductive effects

1.5.4. Endocrine modulation

1.6. Environmental effects

1.6.2. Water solubility

1.6.3. Aquatic toxicity
1.6.4. Sediment toxicity

1.6.5. Bioaccumulation

1.6.6. Biodegradation

1.7. Objectives

CHAPTER 2

2. Instrumentation

2.1. Introduction

2.2. Instrumental components

2.2.1. Carrier gas

2.2.2. Sample injection port

2.2.3. Columns

2.2.4. Column temperature

2.2.5. Detectors

2.2.5.1. Flame Ionization Detector

2.2.5.2. Mass Selective Detector
2.2.6. Current Study description

2.2.6.1. GC system

2.2.6.2. Detector

2.2.6.3. Temperature

2.2.6.4. Column

2.2.6.5. Carrier gas

2.2.7. Preparation of standards

2.3. Sampling

2.3.1. Location

2.3.2. Sampling Technique

2.4. Water sample extraction

2.5. Extract clean – up method

2.6. Recovery study
CHAPTER 3

RESULTS AND DISCUSSION

3. Optimization of instrument

3.1. Identification with GC

3.2. Calibration Result

3.3. Sampling

3.4. Clean – up Method

3.5. Recovery Study

3.6. Errors and precision

3.7. Comparison of residue level of PEs in river water samples

3.7. Evaluation of the results

Chapter Four

4. Conclusion

References