CONTENTS

ABSTRACT ... ii

ABSTRAK ... iv

ACKNOWLEDGEMENTS .. vi

LIST OF FIGURES .. xii

LIST OF TABLES ... xiv

ABBREVIATIONS ... xvi

1 INTRODUCTION ... 1

1.1 AIR POLLUTION ... 1

1.2 ORGANIC AIR POLLUTANTS .. 3

1.3 PARTICLES IN THE ATMOSPHERE .. 3

1.4 POLYCYCLIC AROMATIC HYDROCARBONS (PAHs) AND ALKANES 4

1.4.1 Definitions, Sources, and Presence in the Atmosphere and Street Dusts ... 4

1.4.2 Transport Behavior in the Atmosphere ... 7

1.4.3 Seasonal, Temporal, and Spatial Variations .. 9

1.4.4 Atmospheric Reactions .. 10

1.4.5 Biodegradation and Toxicology ... 12

1.5 SAMPLING AND SAMPLE PRETREATMENT .. 13

1.5.1 Sampling and Sampling Artifacts .. 13

1.5.2 Sample Pretreatment (Extraction and Separation) 18

1.5.3 Quantification and Identification .. 26

1.5.4 Storage Conditions of Particulate Samples .. 30
3.2 GENERAL CHARACTERISTICS OF AIRBORNE PARTICLES AND ROADSIDE SOIL PARTICLES...55

3.2.1 Total PM$_{10}$ Particles (TPM$_{10}$P) ..55
3.2.2 Extractable Organic Matter from Airborne Particulate Samples..56
3.2.3 Extractable Organic Matter from Roadside Soil Particles..........58
3.2.4 Percentages of Identified Organics in TSEOM.................................60

3.3 SOURCES OF AIRBORNE PARTICULATE MATTER.................................61

3.3.1 Internal Combustion Engines...61
3.3.2 Plants..62
3.3.3 Street Dust as a Source and Sink...63

3.4 n-ALKANES...64

3.4.1 Diagnostic Parameters and Calculations...64
3.4.1.1 Carbon Preference Index (CPI)...64
3.4.1.2 Carbon Number Maximum (C$_{\text{max}}$)..64
3.4.1.3 Plant Wax n-Alkanes...64

3.4.2 Sources of n-Alkanes..64
3.4.2.1 Petrogenic Sources...64
3.4.2.2 Biogenic Sources..66

3.4.3 n-Alkanes in Airborne Particles, Roadside Soil Particles, and Lubricating Oils...66
3.4.3.1 n-Alkanes in Airborne Particulate Samples.................................66
3.4.3.2 n-Alkanes in Roadside Soil Particles..71
3.4.3.3 n-Alkanes in Lubricating Oils..74
3.4.3.4 Plant Wax n-Alkanes...75

3.4.3.5 Comparison of Airborne Particulate Samples and Roadside Soil Particles...76
3.5 UNRESOLVED COMPLEX MIXTURE (UCM)..77

3.5.1 UCM in Airborne Particulate Samples, Roadside Soil Particles, and Lubricating Oils...78

3.6 PETROLEUM MOLECULAR MARKERS...83

3.6.1 n-Alkylcyclohexanes...83

3.6.2 Isoprenoid Hydrocarbons (Pristane and Phytane).....................85

3.6.2.1 Sources in Crude Petroleum and the Environment..............85

3.6.2.2 Pristane and Phytane in Airborne Particulate Samples, Roadside Soil Particles, and Lubricating Oils.........................85

3.6.2.3 Pristane to Phytane Ratio (Pr/Ph)..88

3.6.3 Pentacyclic Tritterpanes and Steranes...................................89

3.6.3.1 Sources, Formation, and Occurrence in Fossil Fuels and the Environment...89

3.6.3.2 Hopanes and Steranes as Petroleum Molecular Markers..91

3.6.3.3 Hopanes and Steranes in Environmental Samples..............91

3.6.3.4 Geochemical Diagnostic Parameters and Interpretations........97

3.6.3.4.1 Ratio A...100

3.6.3.4.2 Ratio B...101

3.6.3.4.3 Ratio C...101

3.6.3.4.4 Ratio D...101

3.6.3.4.5 Ratio E...102

3.6.3.4.6 Ratio F...102

3.6.3.4.7 βα-Moretanes..103

3.6.3.4.8 Other Parameters..103
3.7 PYROGENIC MOLECULAR MARKERS (POLYCYCLIC AROMATIC HYDROCARBONS (PAHs)) .. 105

3.7.1 Formation and Sources ... 105

3.7.2 Physico-Chemical Modifications of PAHs during Transport and Sampling ... 106

3.7.3 PAHs in Airborne Particulate Samples, Roadside Soil Particles, and Lubricating Oils ... 107

3.7.3.1 PAHs in Airborne Particulate Samples 107

3.7.3.2 PAHs in Roadside Soil Particles 115

3.7.3.3 PAHs in Lubricating Oils .. 120

3.7.3.4 Comparison of Airborne Particulate Samples and Roadside Soil Particles ... 121

4 CONCLUSION .. 122

REFERENCES .. 126

APPENDICES

A MASS SPECTRA OF SOME COMMON HYDROCARBONS 140

B PHOTOGRAPHS OF THE SAMPLING SITES 143

C CHEMICAL STRUCTURES CITED 147

D PUBLICATIONS ... 149
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Oxidation of benzo[a]pyrene.</td>
<td>11</td>
</tr>
<tr>
<td>1.2</td>
<td>Quinone formation of benzo[a]pyrene by irradiation.</td>
<td>11</td>
</tr>
<tr>
<td>1.3</td>
<td>Oxidation of benzo[a]pyrene by microorganisms.</td>
<td>12</td>
</tr>
<tr>
<td>1.4</td>
<td>Diagnostic mass spectrometric fragmentations (and their mass to charge ratios) used to monitor some common hydrocarbons.</td>
<td>29</td>
</tr>
<tr>
<td>2.1</td>
<td>Location map of the sampling sites in Kuala Lumpur.</td>
<td>33</td>
</tr>
<tr>
<td>2.2</td>
<td>Kuala Lumpur and the Klang valley region.</td>
<td>34</td>
</tr>
<tr>
<td>3.1</td>
<td>Variations in TPM$_{10}$P concentrations at different sampling stations.</td>
<td>56</td>
</tr>
<tr>
<td>3.2</td>
<td>Comparison of the mean percentages of organics in urban airborne particles, urban roadside soil particles, forest airborne particles, and forest roadside soil particles.</td>
<td>61</td>
</tr>
<tr>
<td>3.3</td>
<td>Variations in n-alkanes concentrations at different sampling stations for urban airborne particles.</td>
<td>68</td>
</tr>
<tr>
<td>3.4</td>
<td>Distribution diagrams of n-alkanes in airborne particles.</td>
<td>69</td>
</tr>
<tr>
<td>3.5</td>
<td>Typical m/z 85 fragmentograms (for alkanes) for airborne particles and roadside soil particles.</td>
<td>70</td>
</tr>
<tr>
<td>3.6</td>
<td>Variations in n-alkanes concentrations at different sampling stations for urban roadside soil particles.</td>
<td>71</td>
</tr>
<tr>
<td>3.7</td>
<td>Distribution diagrams of n-alkanes in roadside soil particles.</td>
<td>73</td>
</tr>
<tr>
<td>3.8</td>
<td>Distribution diagrams of n-alkanes in lubricating oils.</td>
<td>75</td>
</tr>
<tr>
<td>3.9</td>
<td>Correlation between CPI and % plant wax n-alkanes for airborne particles [urban and forest] and roadside soil particles [urban and forest].</td>
<td>76</td>
</tr>
<tr>
<td>3.10</td>
<td>Typical TIC of the first chromatographic fraction for airborne particles and roadside soil particles.</td>
<td>79</td>
</tr>
<tr>
<td>3.11</td>
<td>Typical m/z 95 fragmentograms (for naphthenes) for airborne particles and roadside soil particles.</td>
<td>81</td>
</tr>
</tbody>
</table>
3.12 Correlation between CPI and U:R for airborne particles [urban and forest] and roadside soil particles [urban and forest]...82

3.13 Typical m/z 82 and 83 fragmentograms (for n-alkylcyclohexanes) for airborne particles and roadside soil particles..84

3.14 Typical m/z 191 fragmentograms (for hopanes) for airborne particles and roadside soil particles..92

3.15 Typical m/z 217 (for ααα-steranes) and 218 (for αββ-steranes) fragmentograms for airborne particles and roadside soil particles......................94

3.16 Variations in hopanes and steranes concentrations at different sampling stations for urban airborne particles and roadside soil particles.................96

3.17 Distribution diagrams of hopanes and steranes for all the samples studied........98

3.18 Typical m/z 178, 202, 228, 252, 276, 278, and 300 fragmentograms (for PAHs) for airborne particles...108

3.19 Variations in PAHs concentrations at different sampling stations for urban airborne particles...109

3.20 Distribution diagrams of PAHs in airborne particles and roadside soil particles...112

3.21 Typical m/z 178, 202, 228, 252, 276, 278, and 300 fragmentograms (for PAHs) for roadside soil particles...116

3.22 Variations in PAHs concentrations at different sampling stations for urban roadside soil particles...119

3.23 Correlation between BgP and total PAHs for airborne particles [urban and forest] and roadside soil particles [urban and forest].................................120
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Sampling characteristics of selected methods for gaseous and particulate PAH</td>
<td>15</td>
</tr>
<tr>
<td>2.1a</td>
<td>Alkanes standards</td>
<td>38</td>
</tr>
<tr>
<td>2.1b</td>
<td>Alkanes standards</td>
<td>38</td>
</tr>
<tr>
<td>2.2a</td>
<td>PAHs standards</td>
<td>39</td>
</tr>
<tr>
<td>2.2b</td>
<td>PAHs standards</td>
<td>39</td>
</tr>
<tr>
<td>2.2c</td>
<td>PAHs standards</td>
<td>39</td>
</tr>
<tr>
<td>2.3a</td>
<td>First sampling of airborne particulate samples</td>
<td>40</td>
</tr>
<tr>
<td>2.3b</td>
<td>Second sampling of airborne particulate samples</td>
<td>41</td>
</tr>
<tr>
<td>2.3c</td>
<td>Third sampling of airborne particulate samples</td>
<td>41</td>
</tr>
<tr>
<td>2.4a</td>
<td>First sampling of roadside soil particles</td>
<td>42</td>
</tr>
<tr>
<td>2.4b</td>
<td>Second sampling of roadside soil particles</td>
<td>42</td>
</tr>
<tr>
<td>2.4c</td>
<td>Third sampling of roadside soil particles</td>
<td>42</td>
</tr>
<tr>
<td>2.4d</td>
<td>Relative mass distributions (%) of first sampling</td>
<td>43</td>
</tr>
<tr>
<td>2.4e</td>
<td>Relative mass distributions (%) of second sampling</td>
<td>43</td>
</tr>
<tr>
<td>2.4f</td>
<td>Relative mass distributions (%) of third sampling</td>
<td>43</td>
</tr>
<tr>
<td>2.5</td>
<td>Description of forest airborne particles and roadside soil particles</td>
<td>44</td>
</tr>
<tr>
<td>2.6</td>
<td>Description of GCMS chromatographic conditions</td>
<td>46</td>
</tr>
<tr>
<td>2.7</td>
<td>Key fragment ions for mass spectrometric characterization of hydrocarbons</td>
<td>47</td>
</tr>
<tr>
<td>3.1</td>
<td>Mean recovery ± R.S.D. (%) (n = 3) for fractionation step</td>
<td>52</td>
</tr>
<tr>
<td>3.2</td>
<td>Mean recovery ± R.S.D. (%) (n = 3) of C24D50 and PAHs from spiked blank glass fiber filters and roadside soil particles</td>
<td>53</td>
</tr>
<tr>
<td>3.3</td>
<td>Percentage R.S.D. of reproducibility (n = 3)</td>
<td>54</td>
</tr>
</tbody>
</table>
ABBREVIATIONS

ANTH Anthracene
ANTN Anthanthrene
BaA Benz[a]anthracene
BaP Benzo[a]pyrene
BbF Benzo[b]fluoranthene
BeP Benzo[e]pyrene
BgP Benzo[g,h,i]perylene
BkF Benzo[b]fluoranthene
BR Bukit Rengit
CH Cheras
CHR Chrysene
C_{max} Carbon number maximum
COR Coronene
CPI Carbon preference index
dBahA Dibenzo[a,h]Anthracene
DW Dang Wangi
FLO Fresh lubricating oil
FLT Fluoranthene
g Gram
GC Gas chromatography
GC-FID Gas chromatography-flame ionization detector
GCMS Gas chromatography-mass spectrometry
GCMSMS Gas chromatography-mass spectrometry-mass spectrometry
h Hour
hi-vol High-volume
HPLC High performance liquid chromatography
I.D. Internal Diameter
IP Indeno[1,2,3-cd]pyrene
JA Jalan Ampang
JT Jalan Travers
KE Kepong
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC</td>
<td>Liquid chromatography</td>
</tr>
<tr>
<td>m</td>
<td>meter</td>
</tr>
<tr>
<td>min</td>
<td>minute</td>
</tr>
<tr>
<td>MPHEN</td>
<td>4,5-Methylenephenanthrene</td>
</tr>
<tr>
<td>n</td>
<td>Number of observations</td>
</tr>
<tr>
<td>n.a.</td>
<td>Not available</td>
</tr>
<tr>
<td>n.d.</td>
<td>Not detected</td>
</tr>
<tr>
<td>PAHs</td>
<td>Polycyclic aromatic hydrocarbons</td>
</tr>
<tr>
<td>PB</td>
<td>Pantai Baharu</td>
</tr>
<tr>
<td>PER</td>
<td>Perylene</td>
</tr>
<tr>
<td>PHEN</td>
<td>Phenanthrene</td>
</tr>
<tr>
<td>PM$_{10}$</td>
<td>Particulate matter ≤ 10 µm</td>
</tr>
<tr>
<td>PM$_{2.5}$</td>
<td>Particulate matter ≤ 2.5 µm</td>
</tr>
<tr>
<td>ppm</td>
<td>Parts per million</td>
</tr>
<tr>
<td>PU</td>
<td>Pudu</td>
</tr>
<tr>
<td>PYR</td>
<td>Pyrene</td>
</tr>
<tr>
<td>RfC</td>
<td>Reference Concentration</td>
</tr>
<tr>
<td>RfD</td>
<td>Reference Dose</td>
</tr>
<tr>
<td>RIC</td>
<td>Reconstructed ion chromatogram</td>
</tr>
<tr>
<td>SE</td>
<td>Sentul</td>
</tr>
<tr>
<td>sec</td>
<td>Second</td>
</tr>
<tr>
<td>SIM</td>
<td>Selected ion monitoring</td>
</tr>
<tr>
<td>SPE</td>
<td>Solid phase extraction</td>
</tr>
<tr>
<td>TIC</td>
<td>Total ion chromatogram</td>
</tr>
<tr>
<td>TLC</td>
<td>Thin layer chromatography</td>
</tr>
<tr>
<td>TPM$_{10}$P</td>
<td>Total PM$_{10}$ Particles</td>
</tr>
<tr>
<td>TSEOM</td>
<td>Total solvent extractable organic matter</td>
</tr>
<tr>
<td>TSP</td>
<td>Total suspended particles</td>
</tr>
<tr>
<td>UCM</td>
<td>Unresolved complex mixture</td>
</tr>
<tr>
<td>ULOC</td>
<td>Used car lubricating oil</td>
</tr>
<tr>
<td>ULOM</td>
<td>Used motorbike lubricating oil</td>
</tr>
<tr>
<td>US EPA</td>
<td>United States Environmental Protection Agency</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>XAD-2</td>
<td>Styrene and divinylbenzene copolymer</td>
</tr>
<tr>
<td>σ</td>
<td>Standard deviation</td>
</tr>
</tbody>
</table>