R.

PERPUSTAKAAN UNIVERSITI MALAYA

ACG - 7950 INVC nms 2/9/90

CHEMICAL AND PHARMACOLOGICAL STUDIES ON CHEMICAL

CONSTITUENTS OF KAEMPFERIA GALANGA LINN.

BY

ROZANA OTHMAN

DEPARTMENT OF CHEMISTRY

FACULTY OF SCIENCE

UNIVERSITY OF MALAYA

DISSERTATION PRESENTED FOR THE

DEGREE OF MASTER OF SCIENCE

UNIVERSITY OF MALA	YA	20	.03.2600
	No. Mikrofis Jumlah Mikrofis	149	40
(NOVEMBER 1998)		зт. монАм	AD ZAHARI
Perpustakaan Universiti Mal	UPR	UNIT REP PERPUSTA UNIVERSIT	Bografi Kaan utam, 1 Malaya

ACKNOWLEDGEMENT

I would like to express my greatest appreciation to my two supervisors, Dr. Khalijah Awang, Department of Chemistry, and Associate Prof. Dr. Mohd Rais Mustafa, Department of Pharmacology, University of Malaya, for their beneficial guidance, invaluable advice, inspiring ideas, patience and confidence throughout this study. My gratitude would also be due to Dr. Mustafa Ali Mohd, Department of Pharmacology, for his kind help, ideas, dedication, books and for allowing me the access to his instruments (especially the GC-MS machine).

I would also like to extend my sincere thanks to the following person(s):

- 1. Professor Dr. A. Hamid A. Hadi for his ideas, guidance and encouragement.
- 2. Associate Prof. Dr. Halijah Ibrahim for supplying the plant materials.
- Associate Prof. Dr. Hapipah Mohd Ali and Mr. Jamiludin Hidayat for the supply of the compounds structurally similar to ethyl cinnamate.
- Prof. Ng. Soon, Cik Norzalida, Mr. Hanafiah and Mr. Jasmi for the access to the NMR instrument.
- Mr. Shahuddin Hashim for his kind assistance during the pharmacological testings on the rat aorta.
- 6. Staffs of the phytochemistry laboratory for their help around the laboratory.
- All of my colleagues in the chemistry, pharmacology and zoology departments for their friendship and help, and also for sharing their experiences with me. Also, thanks for the support, concern and the stories.

Finally, I owe very much to my family, especially my husband, Hermanto for the constant encouragement throughout this study, not to forget his regular 'push' for me to finish this thesis.

And last, though not least, Alhamdulillah.

And though one thought his journey had ended Think again There's a whole world to discover

	2.3.2	Biogenesis / biosynthesis of Zingiberaceae terpenes	34
2.4	Struct	tural elucidation : General methods and theory	39
	2.4.1	Ultra violet spectra of aromatic or benzenoid compounds	40
	2.4.2	Mass spectroscopy of aromatic or benzenoid compounds	42
	2.4.3	¹ HNMR spectroscopy of aromatic or benzenoid compounds	44
	2.4.4	13CNMR spectroscopy of aromatic or benzenoid compounds	46
СНА	PTER	3	
Smoo	oth mus	icle relaxants	49
3.1	The c	ontractile process and the regulation of calcium in the smooth muscle	49
3.2	Mech	anism of actions of vascular smooth muscle relaxants	56
	3.2.1	α_1 -Adrenoceptor antagonists	56
	3.2.2	Calcium antagonists	59
	3.2.3	Angiotensin converting-enzyme inhibitors and angiotensin	
		antagonists	60
	3.2.4	Drugs that act by increasing cyclic nucleotides concentration	61
	3.2.5	Potassium channel openers	65
	3.2.6	Contractile protein modulators	66
СНА	PTER	4	
Resu	ts and	discussions	67
4.1	Bioass	say-guided study of the CH2Cl2 extract of Kaempferia galanga Linn.	67
	4.1.1	Brine shrimp lethality bioassay on crude $\rm CH_2\rm Cl_2$ extract	69
	4.1.2	Screening of crude $\mathrm{CH}_2\mathrm{Cl}_2$ extract for antihypertensive activity	70
	4.1.3	Isolation of compound A	73
		4.1.3.1 Vasorelaxant activity of compound A	77

	4.1.4	Structural elucidation and determination of compounds isolated	
		from the CH ₂ Cl ₂ extract of Kaempferia galanga Linn.	82
		4.1.4.1 Compound A	82
		4.1.4.2 Compound B	95
4.2	Chem	ical study of the pet. ether extract of Kaempferia galanga Linn.	108
	4.2.1	Structural elucidation and determination of compounds isolated	
		from the pet. ether extract of Kaempferia galanga Linn.	108
		4.2.1.1 Volatile components of Kaempferia galanga Linn.	108
		4.2.1.2 Compound C	111
4.3	Mech	anisms of vasorelaxant action of compound A and comparison of its	
	activit	y with other structurally similar compounds	123
	4.3.1	Effects of compound A and related compounds on the contractions	
		induced by high K^{\star} and PE in endothelium intact rat aorta	125
	4.3.2	Time course of the inhibitory effects of compound A and related	
		compounds on the contractions induced by high \boldsymbol{K}^{\star} and PE in	
		endothelium intact rat aorta	129
	4.3.3	Effects of compound A and related compounds on the PE-induced	
		transient contractions of the rat aorta	131
	4.3.4	Effects of compound A and related compounds on the contractions	
		induced by PE in endothelium intact and denuded preparation of	
		the rat aorta	133
	4.3.5	Effects of methylene blue and indomethacin on the relaxant actions	
		of compound A and related compounds on the contractions induced	
		by PE in the endothelium intact rat aorta	133

v

4.4	Cytot	oxicity ef	ffects of compounds A and C on KB cells	136
CHA	APTER	5		
Con	clusion	8		139
CH/	PTER	6		
Exp	eriment	al		143
6.1	Plant	materials		143
6.2	Phyto	chemical	analysis	145
	6.2.1	Instrum	entation	145
		6.2.1.1	Column chromatography	146
		6.2.1.2	Preparative thin layer chromatography	147
		6.2.1.3	Visualising reagents	147
		6.2.1.4	Recrystallization of pure compounds	148
	6.2.2	Extracti	ion of plant material	148
		6.2.2.1	Bioassay-guided fractionation of the crude CH_2Cl_2 extract	149
		6.2.2.2	Study of the crude pet. ether extract	149
6.3	Biolog	gical assa	у	153
	6.3.1	Brine sh	nrimp lethality bioassay	153
	6.3.2	Antihyp	ertensive activity on anaesthetized rats	155
	6.3.3	Vasorel	axant activity on smooth muscles of rat aorta	155
		6.3.3.1	Effects of compound A and related compounds on the	
			contraction induced by high K^{\ast} and PE in endothelium	
			intact rat aorta	157

vi

		6.3.3.2	Time course of the inhibitory effects of compound A and	
			related compounds on contractions induced by high \boldsymbol{K}^{+}	
			and PE in endothelium intact rat aorta	159
		6.3.3.3	Effects of compound A and related compounds on	
			contractions induced by PE in endothelium intact and	
			denuded preparation of the rat aorta	159
		6.3.3.4	Effects of methylene blue and indomethacin on the	
			relaxant actions of compound A and related compounds	
			on the contractions induced by PE in the endothelium	
			intact rat aorta	159
		6.3.3.5	Effects of compound A and related compounds on the PE-	
			induced transient contractions of the rat aorta	160
	6.3.4	Cytotox	icity assay on KB cells	160
6.4	Physic	cal and sp	ectral data of isolated compounds	161
REF	REFERENCES 164			164

LIST OF FIGURES

Figure		Page
2.1	Ring current effects in benzene	44
3.1	Mechanism of contraction of vascular smooth muscle	52
3.2	Calcium movements in smooth muscle	54
4.1	Schematic procedure of isolation of the chemical constituents from	
	Kaempferia galanga Linn.	68
4.2	Effect of the dichloromethane extract of Kaempferia galanga on the	
	mean arterial pressure (MAP) of anaesthetized rats	72
4.3	Detection and isolation of the bioactive compound of Kaempferia	
	galanga Linn.	74
4.4	Gas chromatograms of the active fractions 1, 2, 3 and 4	75
4.5	Effect of compound A on the contractions induced by high K^{\ast} and PE in	
	endothelium intact rat aorta	80
4.6	Time course of the inhibitory effect of compound A on the contractions	
	induced by high \boldsymbol{K}^{*} and PE in endothelium intact rat aorta	81
4.7	Mass spectrum of compound A	83
4.8	IR spectrum of compound A	86
4.9	¹ HNMR spectrum of compound A	87
4.10	¹³ CNMR spectrum of compound A	89
4.11	DEPT spectrum of compound A	91
4.12	COSY spectrum of compound A	92
4.13	HETCOR spectrum of compound A	93
4.14	HMBC spectrum of compound A	94

4.15	IR spectrum of compound B	96
4.16	Mass spectrum of compound B	98
4.17	¹ HNMR spectrum of compound B	100
4.18	13CNMR spectrum of compound B	102
4.19	DEPT spectrum of compound B	104
4.20	COSY spectrum of compound B	105
4.21	HETCOR spectrum of compound B	106
4.22	HMBC spectrum of compound B	107
4.23	Gas chromatogram of volatile components of Kaempferia galanga Linn.	109
4.24	Mass spectrum of compound C	112
4.25	IR spectrum of compound C	114
4.26	¹ HNMR spectrum of compound C	116
4.27	¹³ CNMR spectrum of compound C	117
4.28	DEPT spectrum of compound C	119
4.29	COSY spectrum of compound C	120
4.30	HETCOR spectrum of compound C	121
4.31	HMBC spectrum of compound C	122
4.32(a)	Effects of compound A and related compounds on the contractions	
	induced by high K ⁺ in endothelium intact rat aorta	126
4.32(b)	Effects of compound A and related compounds on the contractions	
	induced by PE in endothelium intact rat aorta	127
4.33	Time course of the inhibitory effects of compound A and related	
	compounds on the contractions induced by high K^{\star} and PE in	
	endothelium intact rat aorta	130

4.34	Effects of compound A and related compounds on the PE-induced	
	transient contractions of the rat aorta	132
4.35	Effects of compound A and related compounds on the contractions	
	induced by \ensuremath{PE} in endothelium intact and denuded preparations of the rat	
	aorta	134
4.36	Effects of methylene blue and indomethacin on the relaxant actions of	
	compound A and related compounds on the contractions induced by $\ensuremath{\text{PE}}$ in	
	the endothelium intact rat aorta	135
4.37	Toxicity effects of compounds A and C on KB cells	137
5.1	The proposed biogenetic relationship between the phenolics of	
	Kaempferia galanga Linn.	140
6.1	The organ bath and instrumentation for recording muscle contraction	158
Diagram		
4.1	Tonic and phasic contractions of the rat aorta	78
6.1	Kaempferia galanga Linn.	144
Plate		

6.1	Kaempferia galanga Linn.	144
-----	--------------------------	-----

LIST OF SCHEMES

Scheme	±	Page
1.1	Classification of Zingiberaceae	8
2.1	Biosynthesis of phenolic compounds via shikimic acid pathway	27
2.2	Reactions of chorismic acid	29
2.3	Outline on the formation of phenylalanine and tyrosine, and subsequent	
	formation of phenylpropanoids from chorismic acid	30
2.4	Normal biosynthesis of para-hydroxybenzoic acid in plants	32
2.5	A proposed biosynthetic pathway for ubiquinones	33
2.6	Biosynthesis of caffeic acid	35
2.7	Biosynthesis of chloramphenicol	36
2.8	Biosynthesis of terpenes	38
4.1	The mass fragmentation patterns of compound A	84
4.2	The mass fragmentation patterns of compound B	99
4.3	The mass fragmentation patterns of compound C	113
6.1	Flowchart for the bioassay-guided isolation of the bioactive compound of	
	Kaempferia galanga Linn.	151

LIST OF TABLES

Table		Page
1.1	Genera of Zingiberaceae in the Malaysian forest	9
1.2	Distribution of species in genera of the tribe Hedychieae	11
1.3	Different species of the genus Kaempferia and their distribution	12
1.4	List of some of the Zingiberaceous plants used in traditional treatments	
	of several ailments	14
1.5	The ingredients of jamu used for body endurance and protection	16
2.1	The classification of the phenolic constituents in plants	18
4.1	Preliminary screening for biological activity of crude CH2Cl2 extract	
	using the brine shrimp lethality bioassay	71
4.2	Tables showing the chemical constituents of the active fractions 1, 2, 3	
	and 4, respectively, as elucidated from the GC-MS	76
4.3	Volatile components of Kaempferia galanga elucidated from GC-MS	110
4.4	$\mathrm{IC}_{\mathrm{50}}$ values of compounds A-I for their vasorelaxant activities	128
5.1	Postulation on the structure-activity relationship of ethyl cinnamate and	
	other structurally similar compounds against their vasorelaxant activities	142
6.1	Percentage yields of the crude pet. ether and $\mbox{CH}_2\mbox{Cl}_2$ extracts of the	
	rhizomes of Kaempferia galanga Linn.	150
6.2	Phenolics isolated from the rhizomes of Kaempferia galanga Linn.	152

.

ABBREVIATIONS

ATP	adenosine triphosphate
(Ca ²⁺) _i	intracellular Ca2+
[Ca ²⁺] _i	intracellular Ca2+ concentration
CaCl ₂	calcium chloride
cAMP	cyclic adenosine monophosphate
CCl ₄	carbon tetrachloride
CDCl ₃	deuterated chloroform
cGMP	cyclic guanosine monophosphate
CH ₂ Cl ₂	dichloromethane
CHCl ₃	chloroform
cm	centimetre
cm ⁻¹	per centimetre
COSY	H-H correlation spectroscopy
δ	chemical shift
DAHP	3-deoxy-D-arabino-heptulosonic acid-7-phosphate
DEPT	distortionless enhancement by polarisation transfer
DMSO	dimethylsulphoxide
Δν	difference in frequency
3	molar absorptivity
ED ₅₀	effective dose at 50% activity
EDRF	endothelium-derived relaxing factors
EDTA	ethylenediamine-tetraacetic acid
EGTA	$ethyleneglycol-bis-(\beta-aminoethylether) tetraacetic acid$
FT	fourier transform
g	gram
GC	gas chromatogram
HETCOR	heteronuclear chemical shift correlation
high [K^+], high K^+	high K ⁺ concentration
HMBC	heteronuclear multiple bond connectivity
Hz	Hertz

IC ₅₀	concentration required to inhibit 50% of muscle contraction
IP ₃	inositol-1,4,5-triphosphate
IR	infra red
J	coupling constant (Hz)
KCI	potassium chloride
LC ₅₀	concentration required to kill 50% of shrimps
L-type	long lasting type
m	metre
Μ	molar
m/z	mass/charge
MAP	mean arterial pressure
max	maximum
MeOH	methanol
mg ml ⁻¹	milligram per millilitre
MgCl ₂	magnesium chloride
MHz	megaHertz
ml	millilitre
MLC	myosin light-chain
MLCK	myosin light-chain kinase
MLCP	myosin light-chain phosphate
mm	millimetre
mM	millimolar
MS	mass spectrum
mV	millivolt
μg ml ⁻¹	microgram per millilitre
μl	microlitre
NaCl	natrium chloride
NaHCO ₃	natrium hydrogen carbonate
nm	nanometre
nM	nanomolar
NMR	nuclear magnetic resonance
NO	nitric oxide

PE	phenylephrine
pet. ether	petroleum ether
ppm	parts per million
R _f	retention factor
ROC	receptor-operated non-selective $\mathrm{Ca}^{2+}\mathrm{channel}$
Rt	retention time
SR	sarcoplasmic reticulum
tlc	thin layer chromatography
TMS	tetramethylsilane
2D	two dimensions
UV	ultra violet
v/v	volume per volume
var	variants
VDC	voltage-dependent Ca2+ channel

Amino acids

abbreviation	name	structure of R
Ala	alanine	-CH ₃
Arg	arginine	-CH2CH2CH2NHC(=NH)NH2
Asp	aspartic acid	-CH ₂ CO ₂ H
Gly	glycine	-Н
His	histidine	- CH2- N H

Ile	isoleucine	-CH(CH ₃)CH ₂ CH ₃
Leu	leucine	-CH ₂ CH(CH ₃) ₂

Phe	phenylalanine	
Pro	proline	HO_2C HN (complete structure)
Ser	serine	-CH ₂ OH
Туг	tyrosine	-сн2-ОН
Val	valine	-CH(CH ₃) ₂

Phe	phenylalanine	-a+2-
Pro	proline	HO_2C HN (complete structure)
Ser	serine	-CH ₂ OH
Tyr	tyrosine	-сн2-ОН
Val	valine	-CH(CH ₃) ₂

ABSTRACT

A phytochemical study on the constituents of Kaempferia galanga Linn., belonging to the family of Zingiberaceae, was performed. Using various isolation techniques such as solvent extraction, chromatography and recrystallization, three compounds were isolated: ethyl cinnamate, *p*-methoxycinnamic acid and ethyl *p*methoxycinnamate. Structural elucidation of these compounds were carried out by spectral methods. Sixty-two volatile components of this plant were also studied using GC-MS.

Bioassay-guided fractionation of the crude CH2Cl2 extract on repeated chromatographies using the vascular muscles of rat thoracic aorta afforded the active constituent, ethyl cinnamate, which showed inhibitory effects on phenylephrine and high K⁺-induced contractions. Mechanisms of vasorelaxant action of ethyl cinnamate were also compared to several compounds which possessed structurally similar moiety to it, and they were: cinnamaldehyde, Ncinnamalidene-p-fluoroaniline, N-cinnamalidene-p-methoxyaniline, N-cinnamalidene-lysin, methyl cinnamate and cinnamyl cinnamate. The results of this study suggested that these compounds inhibited both Ca2+ influx into the cells via voltagedependent Ca2+ channel and receptor-operated Ca2+ channel, and Ca2+ release from intracellular stores. Moreover, the vasorelaxant actions of ethyl cinnamate and cinnamaldehyde might also partially involve the release of endothelium-derived relaxing factor (EDRF) and prostacyclin from endothelial cells. Ethyl cinnamate and ethyl p-methoxycinnamate were also tested for cytotoxicity against KB cells. The former showed low activity, while the latter revealed strong activity.

ABSTRAK

Satu kajian fitokimia terhadap kandungan Kaempferia galanga Linn., yang tergolong kepada famili Zingiberaceae, telah dijalankan. Dari kaedah-kaedah pengasingan seperti pengekstrakan pelarut, kromatografi dan penghabluran semula, tiga sebatian telah diasingkan: etil sinamat, asid *p*-metoksisinamik dan etil *p*-metoksisinamat. Penentuan struktur sebatian-sebatian ini telah dijalankan dengan kaedah spektra. Enam puluh dua komponen mudahruap tumbuhan ini juga telah dikaji dengan menggunakan GC-MS.

Pemisahan berpandukan ujikaji bio yang dijalankan ke atas ekstrak CH2Cl2 mentah, dengan kaedah kromatografi yang berulang-ulang dan menggunakan otot aorta tikus, telah menghasilkan konstituen aktif, etil sinamat, yang mempamerkan kesan halangan terhadap pengecutan-yang-dijanakan-oleh-fenilefrina dan K⁺ tinggi, Mekanisma aktiviti pengenduran-vaso oleh etil sinamat telah dibandingkan dengan beberapa sebatian yang mempunyai ciri struktur yang serupa dengannya, iaitu: sinamaldehid, N-sinamalidin-p-floroanalina, N-sinamalidin-p-metoksianalina, Nsinamalidin-lisina, metil sinamat dan sinamil sinamat. Keputusan menyarankan bahawa sebatian-sebatian tersebut menghalang kemasukan Ca2+ ke dalam sel-sel melalui terusan-Ca2+ yang bergantung kepada voltan dan kepada reseptor, dan juga pelepasan Ca2+ dari stor intraselular. Dan lagi, aktiviti pengenduran-vaso oleh etil sinamat dan sinamaldehid juga mungkin sedikit sebanyak melibatkan pelepasan faktor-pengenduran dari endotelium dan prostasiklina dari sel-sel endotelial. Etil sinamat dan etil p-metoksisinamat juga telah diuji untuk keracunan-sel terhadap selsel KB. Sebatian yang pertama menunjukkan aktiviti yang lemah, manakala sebatian yang kedua menunjukkan aktiviti yang tinggi.