CHEMICAL CONSTITUENTS OF

DESMOS DUMOSUS, ROXB.

By

Mazdida Sulaiman

Department of Chemistry

Faculty of Science

Thesis Presented for The Degree of Master of Science

University of Malaya

Kuala Lumpur

1999
ACKNOWLEDGMENTS

I am pleased to thank my supervisor Dr. Khalijah Awang for her guidance, advice and dedication throughout the course. I am grateful to have her as my supervisor and I really appreciate it.

I would like to thank too, the followings:

- Prof. A. Hamid Hadi, the Head of Chemistry Department, Faculty of Science, University of Malaya, for accepting me to do this course under his department.
- University of Malaya, for allowing me to have the Fellowship and the IRPA grant.
- Mr. Din, Mr. Teo, Mr. Patchi and the French cooperant for the plant collection.
- Musalmah, Mat Ropi, Norsita, Rozana, Shasya and others for their help and good cooperation throughout the course.

Finally, my warm and very special thanks to my husband for his understanding and patience while I was engaged in this project.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgements</td>
<td>ii</td>
</tr>
<tr>
<td>List of schemes and figures</td>
<td>v</td>
</tr>
<tr>
<td>List of tables</td>
<td>vi</td>
</tr>
<tr>
<td>Abstract</td>
<td>vii</td>
</tr>
<tr>
<td>Abstrak</td>
<td>viii</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>ix</td>
</tr>
</tbody>
</table>

CHAPTER 1

1.0 INTRODUCTION

1.1 Classification of Annonaceae
1.2 Tribe Unoneae
1.3 Genus Desmos
1.3.1 Botanical Features
1.3.2 Medicinal Properties and Biological Activities

CHAPTER 2

2.0 GENERAL CHEMICAL ASPECT

2.1 Alkaloids
2.1.1 The Isoquinoline Alkaloids
2.1.1.1 Aporphines
2.1.1.2 Proaporphines
2.1.1.3 Oxoaporphines
2.1.1.4 Tetrahydroprotoberberines

2.2 Flavonoids
2.2.1 Flavones

2.3 The Biosynthesis Relationship Between The Aporphine Alkaloids
2.3.1 The Biosynthesis Relationship Between Proaporphines and Aporphines

2.3.2 The Biosynthesis Relationship Between Aporphines and Oxoaporphines

2.3.3 The Biosynthesis Relationship Between Benzylisoquinolines and Tetrahydroprotoberberines
CHAPTER 3
3.0 RESULTS AND DISCUSSION 42
3.1 Compounds Isolated From The Leaves 43
3.2 Compounds Isolated From The Bark 59

CHAPTER 4
CONCLUSION 61

CHAPTER 5
EXPERIMENTAL 66

REFERENCES 80
APPENDICES 90
LIST OF SCHEMES AND FIGURES

Schemes

1. Mass fragmentations of aporphine alkaloids 16
2. The formation of [M-15]+ and [M-31]+ 17
4. The formation of [M-29]+ of proaporphines 22
5. The formation of [M-29]+ or [M-43]+ by the retro-Diels-Alder fragmentation 23
6. The retro-Diels-Alder fragmentation of N-acetyl proaporphines 24
7. Mass fragmentations of tetrahydroprotoberberines 30
8. Mass fragmentations of flavone 38
9. The biosynthesis relationship between proaporphines and aporphines 39
10. The synthesis from pronuciferine 37 (proaporphine) to nuciferine 38 (aporphine) 40
11. The biosynthesis relationship proposed between benzylisoquinolines and tetrahydroprotoberberines 41
12. Mass fragmentations of pronuciferine 37 45
13. Mass fragmentations pattern of normuciferine 40 49
14. The proposed biogenetic relationship of the alkaloids isolated 65
Figures

1. The UV spectra of aporphines
 page 19
2. The UV spectra of aporphines
 (with and without substituent at C-11)
 page 19
3. COSY spectrum of pronuciferine 37
 page 46
4. Electron donating effect of C-5 hydroxyl
 page 58
5. Electron withdrawing effect of carbonyl group on H-3
 page 58
6. Structures of compound isolated from Desmos dumosus
 page 64
7. Desmos dumosus
 page 70

LIST OF TABLES

1. The classification of Annonaceae
 page 4
2. The genera of Annonaceae
 page 5
3. The relationship in the tribe of Unoneae
 page 6
4. Compounds isolated from Desmos dumosus
 page 63
5. The relationship between spot color and flavonoids structure
 page 69
6. The yield of chemical constituents of the leaves
 page 73
7. The yield of chemical constituents of the bark
 page 74
ABSTRACT

The chemical content of the leaves and bark of *Desmos dudosus* has been carried out in this study. The leaves yielded nine isoquinoline type of alkaloids and two flavones.

The isoquinoline alkaloids isolated were pronuciferine 37, stepharine 39, normuciferine 40, (-) - 3 - hydroxynormuciferine 41, norlirioferine 42, asimilobine 43, liriodenine 44, lycamine 45 and O - methylmoschatoline 46.

The flavones were 5 - hydroxy - 6,7 - dimethoxyflavone 47 and 5 - hydroxy - 7,8 - dimethoxyflavone 48.

The same flavones, 47 and 48 and the alkaloids 45 and 46 were also present in the bark of this species. Another two isoquinoline alkaloids, namely O – methylisopilene 49 and discretamine 50, were found only in the bark of *Desmos dudosus*.

All the above compounds were isolated by using chromatographic techniques, whereas the structural formula of the isolated compounds were elucidated using spectroscopic methods such as 1H NMR, 13C NMR, COSY, MS, IR and UV.
ABSTRAK

Di dalam kajian ini, kandungan kimia terhadap pokok Annonaceae (Malaysia) iaitu Desmos dumosus adalah ditentukan. Penyelidikan yang dijalankan adalah pada bahagian daun dan kulit batangnya.

Pada bahagian daun, sembilan alkaloid jenis Isokuinolina dan dua flavon telah ditemui. Alkaloid yang ditemui ialah pronusiferina 37, stefarina 39, normusiferina 40, (-) - 3 - hidroksinornusiferina 41, norlirioferina 42, asimilobina 43, liriodenina 44, lisikamina 45 dan O-metilmoskatolina 46. Manakala flavonnya pula ialah 5 - hidroksi - 6,7 - dimetoksiflavon 47 dan 5 - hidroksi - 7,8 - dimetoksiflavon 48.

Flavon yang sama iaitu 47 dan 48, dan alkaloid 45 dan 46 juga telah ditemui dalam bahagian kulit batang sepsis ini. Dua alkaloid isokuinolina lain, iaitu O-metilisopilina 49 dan diskritamina 50 telah ditemui hanya dalam kulit batang Desmos dumosus.

Kesemua sebatian diatas telah dipisahkan dengan menggunakan teknik kromatografi manakala formula struktur bagi sebatian yang dipisahkan itu dielusidasikan menggunakan kaedah spektroskopi seperti 1H NMR, 13C NMR, COSY, MS, IR dan UV.
ABBREVIATIONS

spp. species
NMR nuclear magnetic resonance
IR infra red
UV ultraviolet
ppm parts per million
nm nanometer
Hz hertz
CHO - C = O

CO - C = O
m/z mass per electron
D₂O deuterated water
CDCl₃ deuterated chloroform
CCl₄ carbon tetrachloride
C₆D₆ deuterated benzene
NaBH₄ natrium borohydride
[O] oxidation
[H] reduction
GCMS gas chromatography mass spectra
OMe OCH₃
dd doublet
d doublet
s singlet
EI electron impact
APCI atmospheric pressure chemical ionization