CONTENTS

Original Literary Work Declaration ii
Declaration iii
Abstract iv
Acknowledgements v
Contents vii
List of Tables xiii
List of Figures xv

CHAPTER 1: INTRODUCTION, AIM AND OBJECTIVES OF STUDY

1.1. Introduction 2
1.2. Aim of Study 6
1.3. Objectives of this Study 6

CHAPTER 2: LITERATURE REVIEW

2.1. Restoration Of Access Cavities Through Crowns In Endodontically Treated Teeth 8

2.1.1. Coronal microleakage of restored endodontically treated access Cavities 8

2.1.2. Endodontic access openings through existing crowns 9

2.1.3. Burs for preparing access cavities through existing crowns 10

2.1.4. Coronal Repair Restorations 11

2.1.4.1. Repair of access cavities through coronal restorations 12

2.1.4.2. The advantages of restoring the endodontic access cavities through an existing crown 13

2.1.4.3. The disadvantages of restoring the endodontic access cavities through an existing crown 13

2.1.4.4. Coronal Restorative Materials 14

2.2. Dental Porcelain 17
2.2.1. Definitions.
2.2.2. Historical Perspective of Porcelain.
2.2.3. Alloys for Porcelain Fused to Metal
 2.2.3.1. Base Metal Alloys
2.3. Resin-Based Composites
 2.3.1. Introduction
 2.3.2. Definition of Dental Composite
 2.3.3. Composition of Dental Composite
 2.3.3.1. Organic Phase
 2.3.3.2. Inorganic Fillers
 2.3.3.3. Coupling Agents
 2.3.4. Classification of Resin-Based Composite
 2.3.5. Problems With Composite Resins
 2.3.5.1. Polymerization Shrinkage
 2.3.5.2. Coefficient of Thermal Expansion
 2.3.5.3. Water Sorption and Solubility
 2.3.5.4. Modulus of Elasticity
 2.3.6. Packable Composite
 2.3.7. Flowable Composite
2.4. Resin Modified Glass Ionomer Cements (RMGICs)
2.5. Bonding Agents (Adhesive System)
 2.5.1. Definitions
 2.5.2. General aspects of dentin bonding system
 2.5.3. Composition of Bonding System
 2.5.3.1. Etchants
 2.5.3.2. Primers
2.5.3.3. Adhesives

2.6. Microleakage

2.6.1. Factors Contributing to Microleakage

2.6.1.1. Interfacial space

2.6.1.2. Physical Properties of Restorative Materials

2.6.1.2.1. Solubility And Water Sorption

2.6.1.2.2. Coefficient of Thermal Expansion

2.6.1.3. Restorative Technique

2.6.1.4. Effect of Thermocycling

2.6.1.5. Effect of Mechanical Load Cycling

2.6.2. Methods of Demonstrating Microleakage

2.6.2.1. Direct Visualization

2.6.2.2. Dyes

2.6.2.3. Radioactive Isotopes

2.6.2.4. Bacteria

2.6.2.5. Scanning Electron Microscopy

2.6.2.6. Air Pressure

2.6.2.7. Artificial Caries

2.6.2.8. Neutron Activation Analysis

2.6.2.9. Electrical Conductivity

2.6.2.10. Fluid Flow Technique

CHAPTER 3: Materials and Methods

3.1. Materials Used In The Study

3.2. Methodology

3.2.1. Steps of Samples Fabrication

3.2.1.1. Wax Preparation
3.2.1.2. Spruing
3.2.1.3. Investing
3.2.1.4. Burnout
3.2.1.5. Casting
3.2.1.6. Finishing and Preparation of the Sample to receive porcelain
 3.2.1.6.1. Removing the sprue (de-spruing)
 3.2.1.6.2. Fitting the samples
 3.2.1.6.3. Recontouring the sprue area
3.2.1.7. Metal Oxidation
3.2.1.8. Porcelain Buildup
 3.2.1.8.1. Opaque Application
 3.2.1.8.2. Body And Enamel Porcelain Applications
3.2.1.9. Treatment of the inner surfaces of the PFM access openings
3.2.2. Surface Roughness test
3.2.3. Construction of Standardized Epoxy Mould with a centre cavity
3.2.4. Sample Groupings
3.2.5. Samples Filling
 3.2.5.1. Group A
 3.2.5.2. Group B
3.2.6. Water storage, Thermocycling and Dye Application
3.2.7. Sectioning
3.2.8. Measuring of Dye Penetration Depth
3.2.9. Statistic Analysis

CHAPTER 4: RESULTS

4.1. Mean Dye Penetration from Coronal Microleakage
 4.1.1. Coronal microleakage in restored endodontic access openings
 (Mean Dye Penetration according to Restorative Technique, Water
Storage and Thermocycling): Mean Dye Penetration.

4.1.2. The Effect of Restorative Technique, Water Storage and Thermocycling on Coronal Microleakage: Mean Dye Penetration.

4.1.3. The Effect of Water Storage and Thermocycling on Coronal Microleakage: Mean Dye Penetration.

4.1.5. The Effect of Water Storage on Coronal Microleakage without Thermocycling: Mean Dye Penetration.

4.2. Maximum Dye Penetration from Coronal Microleakage

4.2.1. Coronal Microleakage in Restored Endodontic Access Openings (Maximum Dye Penetration according to Restorative Technique, Water Storage and Thermocycling)

4.2.2. The Effect of Restorative Technique, Water Storage and Thermocycling on Coronal Microleakage: Maximum Dye Penetration.

4.2.3. The Effect of Restorative Technique on Coronal Microleakage: Maximum Dye Penetration.

4.2.4. The Effect of Water Storage on Coronal Microleakage: Maximum Dye Penetration.

4.2.5. The Effect of Thermocycling on Coronal Microleakage: Maximum Dye Penetration.

4.2.7. The Effect of Water Storage on Coronal Microleakage without Thermocycling: Maximum Dye Penetration.

4.3. Comparison between Mean and Maximum Dye Penetration.

CHAPTER 5: DISCUSSION

5.1. Materials and Methods

5.1.1. Specimens

5.1.1.1. The thickness of the specimens of this in-vitro study

5.1.1.2. Specimens fabrications
5.1.2. Restorative Materials

5.2. Specimens Preparation

5.2.1. Access Cavities of PFM Crowns

5.2.2. The surface treatment of the inner walls of the access cavities PFM

5.2.3. The fixation of the access cavities on to filled cavity-epoxy resin mould

5.2.4. Technique of Restorative

5.3. Specimens Evaluation

5.3.1. Water Storage and Thermocycling

5.3.2. Dye Application

5.3.3. Sectioning and Assessment

5.4. Results

5.4.1. General Results

5.4.2. Comparison of Results

5.4.2.1. The Effect of Restorative Technique on Coronal Microleakage

5.4.2.2. The Effect of Water Storage on Coronal Microleakage

5.4.2.3. The Effect of Thermocycling on Coronal Microleakage

CHAPTER 6: CONCLUSIONS AND CLINICAL RELEVANCE AND RECOMMENDATIONS FOR FURTHER WORK

6.1. Conclusions

6.2. Clinical Relevance

6.3. Recommendations for further work

CHAPTER 7: REFERENCES

APPENDIX

Appendix A

Appendix B

Appendix C

Appendix D
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1</td>
<td>Function of fillers.</td>
<td>22</td>
</tr>
<tr>
<td>2-2</td>
<td>Classification of dental composites by filler particles size.</td>
<td>23</td>
</tr>
<tr>
<td>2-3</td>
<td>Classification of resin-based composites and indications for use.</td>
<td>24</td>
</tr>
<tr>
<td>2-4</td>
<td>Characteristics of various types of composites.</td>
<td>25</td>
</tr>
<tr>
<td>2-5</td>
<td>Properties of composite restorative materials.</td>
<td>25</td>
</tr>
<tr>
<td>2-6</td>
<td>Packable composites materials.</td>
<td>32</td>
</tr>
<tr>
<td>3-1</td>
<td>List of materials, presentation, manufacturer, lot number and expiry date.</td>
<td>62</td>
</tr>
<tr>
<td>3-2</td>
<td>Main contents of materials and manufacturer’s recommendations.</td>
<td>63</td>
</tr>
<tr>
<td>3-3</td>
<td>Intra-class correlation coefficient.</td>
<td>79</td>
</tr>
<tr>
<td>4-1</td>
<td>Mean Dye Penetration for Coronal Microleakage.</td>
<td>93</td>
</tr>
<tr>
<td>4-2</td>
<td>The Effect of Restorative Technique, Water Storage and Thermocycling on Coronal Microleakage: Mean Dye Penetration.</td>
<td>95</td>
</tr>
<tr>
<td>4-3</td>
<td>The Effect of Water Storage and Thermocycling on Coronal Microleakage: Mean Dye Penetration.</td>
<td>96</td>
</tr>
<tr>
<td>4-4</td>
<td>The Effect of Water Storage on Coronal Microleakage in Thermocycling Group: Mean Dye Penetration.</td>
<td>96</td>
</tr>
<tr>
<td>4-5</td>
<td>The Effect of Water Storage on Coronal Microleakage without Thermocycling. Mean Dye Penetration.</td>
<td>97</td>
</tr>
<tr>
<td>4-6</td>
<td>Maximum Dye Penetration for Coronal Microleakage.</td>
<td>98</td>
</tr>
<tr>
<td>4-7</td>
<td>The Effect of Restorative Technique on Coronal Microleakage: Maximum Dye Penetration.</td>
<td>100</td>
</tr>
<tr>
<td>4-8</td>
<td>The Effect of Water Storage on Coronal Microleakage: Maximum Dye Penetration.</td>
<td>100</td>
</tr>
<tr>
<td>4-9</td>
<td>The Effect of Thermocycling on Coronal Microleakage: Maximum Dye Penetration.</td>
<td>100</td>
</tr>
<tr>
<td>Table</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>4-10</td>
<td>The Effect of Water Storage on Coronal Microleakage in Thermocycling Group: Maximum Dye Penetration.</td>
<td>101</td>
</tr>
<tr>
<td>4-11</td>
<td>The Effect of Water Storage on Coronal Microleakage without Thermocycling: Maximum Dye Penetration.</td>
<td>101</td>
</tr>
<tr>
<td>4-12</td>
<td>Intra-class Correlation Coefficient for Mean and Maximum Dye Penetration.</td>
<td>102</td>
</tr>
<tr>
<td>4-13</td>
<td>Comparison between Mean and Maximum Dye Penetration.</td>
<td>102</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-1</td>
<td>Standard washer custom made.</td>
<td>81</td>
</tr>
<tr>
<td>3-2</td>
<td>Fabrication of wax discs patterns.</td>
<td>81</td>
</tr>
<tr>
<td>3-3</td>
<td>PFM sample was fixed on the Filled Cavity-Epoxy-Mould.</td>
<td>81</td>
</tr>
<tr>
<td>3-4</td>
<td>Spruing of wax discs.</td>
<td>81</td>
</tr>
<tr>
<td>3-5</td>
<td>The investment materials.</td>
<td>81</td>
</tr>
<tr>
<td>3-6</td>
<td>The sprued discs invested.</td>
<td>81</td>
</tr>
<tr>
<td>3-7</td>
<td>Collon Bium Type I®.</td>
<td>82</td>
</tr>
<tr>
<td>3-8</td>
<td>The Casting was sandblasted.</td>
<td>82</td>
</tr>
<tr>
<td>3-9</td>
<td>The flat metal discs.</td>
<td>82</td>
</tr>
<tr>
<td>3-10</td>
<td>The metal discs after sandblasting.</td>
<td>82</td>
</tr>
<tr>
<td>3-11</td>
<td>The oxidation the metal.</td>
<td>82</td>
</tr>
<tr>
<td>3-12</td>
<td>Vita VKM® 68 porcelain.</td>
<td>82</td>
</tr>
<tr>
<td>3-13</td>
<td>The opaque porcelain application.</td>
<td>83</td>
</tr>
<tr>
<td>3-14</td>
<td>The thickness of opaque layer.</td>
<td>83</td>
</tr>
<tr>
<td>3-15</td>
<td>The firing of body porcelain layer.</td>
<td>83</td>
</tr>
<tr>
<td>3-16</td>
<td>Grinder machine was used.</td>
<td>83</td>
</tr>
<tr>
<td>3-17</td>
<td>PFM s were stored in saline.</td>
<td>83</td>
</tr>
<tr>
<td>3-18</td>
<td>Simulated PFM samples.</td>
<td>83</td>
</tr>
<tr>
<td>3-19</td>
<td>The thickness of PFM sample</td>
<td>83</td>
</tr>
<tr>
<td>3-20</td>
<td>Diameter of access opening.</td>
<td>83</td>
</tr>
<tr>
<td>3-21</td>
<td>The dental surveyor was used to mount the turbine.</td>
<td>84</td>
</tr>
<tr>
<td>3-22</td>
<td>The burs and Turbine were used to treat the access openings.</td>
<td>84</td>
</tr>
<tr>
<td>3-23</td>
<td>The Surftester® (Mitutoyo®, Japan).</td>
<td>84</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>3-24</td>
<td>Roughness of inner surface was measured.</td>
<td>84</td>
</tr>
<tr>
<td>3-25</td>
<td>The standardized wax box made.</td>
<td>84</td>
</tr>
<tr>
<td>3-26</td>
<td>The standardized stone mould.</td>
<td>84</td>
</tr>
<tr>
<td>3-27</td>
<td>Silicone mould.</td>
<td>85</td>
</tr>
<tr>
<td>3-28</td>
<td>The standardized cavity-epoxy-mould</td>
<td>85</td>
</tr>
<tr>
<td>3-29</td>
<td>Vitrebond™ (3M ESPE, USA).</td>
<td>85</td>
</tr>
<tr>
<td>3-30</td>
<td>Filled cavities of epoxy moulds after grinding.</td>
<td>85</td>
</tr>
<tr>
<td>3-31</td>
<td>Supa Glue (Selleys®, Australia).</td>
<td>85</td>
</tr>
<tr>
<td>3-32</td>
<td>PFM and filled cavity epoxy were glued.</td>
<td>85</td>
</tr>
<tr>
<td>3-33</td>
<td>PFM and filled cavity fixed by epoxy resin.</td>
<td>86</td>
</tr>
<tr>
<td>3-34</td>
<td>The digimatic indicator (Miyutoyo®, Japan).</td>
<td>86</td>
</tr>
<tr>
<td>3-35</td>
<td>Depth access opening from surface.</td>
<td>86</td>
</tr>
<tr>
<td>3-36</td>
<td>The depth of access opening from base.</td>
<td>86</td>
</tr>
<tr>
<td>3-37</td>
<td>Ten sample for each subgroup.</td>
<td>86</td>
</tr>
<tr>
<td>3-38</td>
<td>Diagram showing samples grouping and sub-grouping.</td>
<td>73</td>
</tr>
<tr>
<td>3-39</td>
<td>Adper™ Scotchbond™ Multi-Purpose Plus (3M, USA).</td>
<td>86</td>
</tr>
<tr>
<td>3-40</td>
<td>Packable composite (Filtek™ P60, 3M ESPE, USA).</td>
<td>87</td>
</tr>
<tr>
<td>3-41</td>
<td>The application of P60.</td>
<td>87</td>
</tr>
<tr>
<td>3-42</td>
<td>Applied 5 kg static load.</td>
<td>87</td>
</tr>
<tr>
<td>3-43</td>
<td>Light-cure tip close to Mylar strip.</td>
<td>87</td>
</tr>
<tr>
<td>3-44</td>
<td>Filtek™ Z350 flowable composite (3M ESPE, USA).</td>
<td>87</td>
</tr>
<tr>
<td>3-45</td>
<td>Filtek™ Z350 was applied into access opening.</td>
<td>88</td>
</tr>
<tr>
<td>3-46</td>
<td>Access opening of PFM was restored.</td>
<td>88</td>
</tr>
<tr>
<td>3-47</td>
<td>Samples were stored in the distilled water</td>
<td>88</td>
</tr>
<tr>
<td>3-48</td>
<td>Restored PFM after grinding.</td>
<td>88</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>3-49</td>
<td>Sof-Lex™ polishing discs (3M, USA).</td>
<td>88</td>
</tr>
<tr>
<td>3-50</td>
<td>Sof-Lex™ disc mounted on low-speed handpiece.</td>
<td>89</td>
</tr>
<tr>
<td>3-51</td>
<td>Restored access opening after finishing and polishing</td>
<td>89</td>
</tr>
<tr>
<td>3-52</td>
<td>The thermocycling machine used in this study.</td>
<td>89</td>
</tr>
<tr>
<td>3-53</td>
<td>Varnished specimens were immersed in the blue ink.</td>
<td>89</td>
</tr>
<tr>
<td>3-54</td>
<td>Blue ink (Parkar® Quink®, UK).</td>
<td>90</td>
</tr>
<tr>
<td>3-55</td>
<td>Sample was embedded in epoxy resin.</td>
<td>90</td>
</tr>
<tr>
<td>3-56</td>
<td>Isomet High-Speed was used.</td>
<td>90</td>
</tr>
<tr>
<td>3-57</td>
<td>Sample sectioned by 0.5 mm diamond blade.</td>
<td>90</td>
</tr>
<tr>
<td>3-58</td>
<td>Sample was sectioned into 2 equal halves.</td>
<td>90</td>
</tr>
<tr>
<td>3-59</td>
<td>The one half section of the sample.</td>
<td>91</td>
</tr>
<tr>
<td>3-60</td>
<td>Sample was sectioned into 4 quadrants.</td>
<td>91</td>
</tr>
<tr>
<td>3-61</td>
<td>Quadrant section has 2 sites for evaluation.</td>
<td>91</td>
</tr>
<tr>
<td>3-62</td>
<td>The digital Video Camera with Computerized-Image-Analyzer System.</td>
<td>91</td>
</tr>
<tr>
<td>4-1</td>
<td>Microleakage according to Mean Dye Penetration Criterion.</td>
<td>94</td>
</tr>
<tr>
<td>4-2</td>
<td>Mean of Maximum Dye Penetration Criterion.</td>
<td>99</td>
</tr>
<tr>
<td>4-3</td>
<td>No dye leakage at PFM-composite interface (Sub-group B1).</td>
<td>103</td>
</tr>
<tr>
<td>4-4</td>
<td>No dye leakage at PFM-composite interface (Sub-group A1).</td>
<td>103</td>
</tr>
<tr>
<td>4-5</td>
<td>Dye leakage at PFM-composite interface (Sub-group A2).</td>
<td>104</td>
</tr>
<tr>
<td>4-6</td>
<td>Dye leakage at PFM-composite interface (Sub-group B2).</td>
<td>104</td>
</tr>
<tr>
<td>4-7</td>
<td>No dye leakage at PFM-composite interface (Sub-group B3).</td>
<td>105</td>
</tr>
<tr>
<td>4-8</td>
<td>No dye leakage at PFM-composite interface (Sub-group A3).</td>
<td>105</td>
</tr>
<tr>
<td>4-9</td>
<td>Dye leakage at PFM-composite interface (Sub-group B4).</td>
<td>106</td>
</tr>
<tr>
<td>4-10</td>
<td>Dye leakage at PFM-composite interface (Sub-group A4).</td>
<td>106</td>
</tr>
</tbody>
</table>