CONTENTS

ACKNOWLEDGMENTS ... iii

ABSTRACT .. iv

LIST OF TABLES ... xii

LIST OF FIGURES ... xiv

ABBREVIATIONS .. xx

CHAPTER ONE GENERAL INTRODUCTION 1

1.1 Contamination of edible oils and fats 1

1.1.1. Dioxin
1.1.2. Toxic oil syndrome
1.1.3. PCB-based thermal heating fluid
1.1.4. Petroleum fuel

1.2. Background of the study ... 5

CHAPTER TWO LITERATURE REVIEW 7

2.1. Chromatographic techniques for analyses of edible oils and fats 7

2.1.1. Introduction
2.1.2. GC
 2.1.2.1. Fatty acid methyl esters (FAMEs)
 2.1.2.1. Tri- and partial glycerides
2.1.3. HPLC
 2.1.3.1. Lipid classes
 2.1.3.2. Free fatty acids
 2.1.3.3. Partial glycerides
 2.1.3.4. Tri-glycerides

2.2. Trace analyses of contaminants in edible oils and fats 17

2.2.1. Inorganic contaminant
 2.2.1.1. Metals
2.2.2. Organic contaminants
 2.2.2.1. PAHs
 2.2.2.2. Organic solvents
 2.2.2.3. Mineral oils
 2.2.2.4. Thermal heating fluids
 2.2.2.4.1. PCB-based thermal heating fluid
 2.2.2.4.2. Eutectic mixtures of diphenyl oxide and biphenyl

CHAPTER THREE EXPERIMENTAL.................................25

3.1. Apparatus and instrumentation..25
 3.1.1. Spectrofluorometry
 3.1.2. GC
 3.1.2.1. Mass spectrometry (MS)
 3.1.2.2. Flame ionization detection (FID)
 3.1.3. HPLC

3.2. Quantitative analysis..27
 3.2.1. Eutectic mixtures of diphenyl oxide and biphenyl
 3.2.1.1. Reference standards
 3.2.1.2. Working standards
 3.2.1.3. Sample matrices
 3.2.1.4. Recovery studies
 3.2.1.5. Collaborators
 3.2.1.6. HPLC conditions
 3.2.1.7. GC-MS conditions

 3.2.2. Partially hydrogenated terphenyls
 3.2.2.1. Materials
 3.2.2.2. Hydrogenation of terphenyls
 3.2.2.3. Analysis of glycerin and fatty acids
 3.2.2.4. Analysis of vegetable oils
 3.2.2.5. HPLC conditions
 3.2.2.6. GC-MS conditions

 3.2.3. Synthetic hydrocarbons
 3.2.3.1. Materials
 3.2.3.2. Preparation of glassware
 3.2.3.3. Glass column chromatography
 3.2.3.4. HPLC conditions
 3.2.3.5. GC-FID conditions
 3.2.3.6. Quantitation
3.2.4. Diesel fuel
 3.2.4.1. Reference chemicals
 3.2.4.2. Standard solutions
 3.2.4.3. Test samples
 3.2.4.4. Validation
 3.2.4.5. Glass column chromatography
 3.2.4.6. HPLC conditions
 3.2.4.7. GC-MS conditions

CHAPTER FOUR RESULTS AND DISCUSSION40

4.1. Eutectic mixtures of diphenyl oxide and biphenyl40

4.1.1. Analytical assessment
 4.1.1.1. Spectrofluorometric analysis
 4.1.1.2. HPLC-UV analysis
 4.1.1.3. HPLC-fluorescence analysis
 4.1.1.4. GC-MS analysis

4.1.2. Determination of the eutectic mixtures in spiked matrices
 4.1.2.1. Optimization of HPLC-fluorescence detection
 4.1.2.2. Quantitative analysis of the eutectic mixtures
 in vegetable oils and oleochemicals
 4.1.2.3. Inter-laboratory study of the HPLC method for the
determination of the eutectic mixtures

4.2. Partially hydrogenated terphenyls56

4.2.1. Analytical assessment
 4.2.1.1. Spectrofluorometric analysis
 4.2.1.2. HPLC analysis
 4.2.1.3. GC-MS analysis

4.2.2. Quantitation of the partially hydrogenated terphenyls
 in spiked matrices
 4.2.2.1. Spiked fatty acid and glycerin samples
 4.2.2.2. Spiked edible oil samples

4.3. Synthetic oil ..80

4.3.1. Instrumental assessment
4.3.2. Column chromatography
4.3.3. HPLC analysis of glycerin and fatty acids
4.3.4. Analysis of vegetable oils
 4.3.4.1. HPLC
 4.3.4.2. GC-FID
4.4. Diesel fuel

4.4.1. Spectrofluorometric analysis
4.4.2. GC-MS analysis
4.4.3. Reversed-phase HPLC-fluorescence detection
4.4.4. Normal-phase HPLC-fluorescence detection
 4.4.4.1. Optimization of wavelengths
 4.4.4.2. Analysis of spiked vegetable oils
 4.4.4.3. Analysis of commercial crude palm oil

CHAPTER FIVE

CONCLUSIONS

REFERENCES

APPENDIX
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Optimization of fluorescence wavelengths for quantitation of biphenyl and diphenyl oxide</td>
<td>45</td>
</tr>
<tr>
<td>4.2</td>
<td>Calibration data obtained from Dowtherm A<sup>TM</sup> solutions in methanol</td>
<td>51</td>
</tr>
<tr>
<td>4.3</td>
<td>Recovery studies of Dowtherm A<sup>TM</sup> from spiked glycerin samples.</td>
<td>52</td>
</tr>
<tr>
<td>4.4</td>
<td>Recoveries of Dowtherm A<sup>TM</sup> from various spiked samples based on 3 readings each.</td>
<td>52</td>
</tr>
<tr>
<td>4.5</td>
<td>Inter-laboratory study on the recoveries of Dowtherm A<sup>TM</sup> from various spiked samples (n=6).</td>
<td>56</td>
</tr>
<tr>
<td>4.6</td>
<td>Absorption characteristics of hydrogenated products of terphenyls reported by Scola et al.<sup>120</sup></td>
<td>63</td>
</tr>
<tr>
<td>4.7</td>
<td>Typical MS fragmentation patterns of terphenyl and its hydrogenated products.</td>
<td>67</td>
</tr>
<tr>
<td>4.8</td>
<td>Linearity and recovery results of Therminol 66<sup>TM</sup> in spiked glycerin obtained by measuring the 4-cyclohexylbiphenyl peak.</td>
<td>76</td>
</tr>
<tr>
<td>4.9</td>
<td>Precision and accuracy of the HPLC method for the determination of Therminol 66<sup>TM</sup> in spiked fatty acids.</td>
<td>76</td>
</tr>
<tr>
<td>4.10</td>
<td>Intra-day precision obtained from the analysis of spiked palm olein with Therminol 66<sup>TM</sup>.</td>
<td>79</td>
</tr>
<tr>
<td>4.11</td>
<td>Inter-day precision obtained from the analysis of spiked palm olein with Therminol 66<sup>TM</sup>.</td>
<td>79</td>
</tr>
<tr>
<td>4.12</td>
<td>Recovery studies of Therminol 66<sup>TM</sup> at 0.2 µg/g obtained from various spiked vegetable oils (n=3).</td>
<td>79</td>
</tr>
<tr>
<td>4.13</td>
<td>Recovery of Therminol 55<sup>TM</sup> in basic oleochemicals using HPLC-UV and -fluorescence detections (n=6).</td>
<td>89</td>
</tr>
<tr>
<td>4.14</td>
<td>Recovery of Therminol 55<sup>TM</sup> in vegetable oils using HPLC-fluorescence detection (n=6).</td>
<td>93</td>
</tr>
</tbody>
</table>
4.15 Reproducibility of GC-FID analysis of Therminol 55TM in spiked palm olein (n=3)... 97
4.16 Recovery of Therminol 55TM in vegetable oils (n=3).................. 98
4.17 Calibration data obtained from spiked crude palm oil solutions..... 110
4.18 Recovery results of diesel from various spiked samples (n=3)...... 112
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Chemical structures of biphenyl and diphenyl oxide molecules...</td>
<td>40</td>
</tr>
<tr>
<td>4.2</td>
<td>Fluorescence excitation and emission spectra of (a) biphenyl, (b) diphenyl oxide and (c) Dowtherm A^{TM} solutions in hexane. All solutions are 1 µg/mL concentration</td>
<td>41</td>
</tr>
<tr>
<td>4.3</td>
<td>HPLC chromatograms of (a) diphenyl oxide and biphenyl standard solution of the same concentration (100 µg/mL each) and (b) Dowtherm A^{TM} solution (100 µg/mL) plotted on similar scale. Peak identification: 1, diphenyl oxide; and 2, biphenyl. HPLC conditions: column, GL C18 250 x 4.6 mm i.d.; mobile phase, methanol and water (90:10, vol/vol); oven temperature, 40°C; and UV detection, 254 nm.</td>
<td>43</td>
</tr>
<tr>
<td>4.4</td>
<td>Calibration graph of the eutectic mixture with concentrations plotted against peak areas of diphenyl oxide (●) and biphenyl (■).</td>
<td>43</td>
</tr>
<tr>
<td>4.5</td>
<td>HPLC fluorescence chromatograms of Dowtherm A^{TM} (10 µg/mL) plotted on the same scale. The wavelengths used were (a) 247 nm (excitation) and 310 nm (emission), and (b) 272 nm (excitation) and 300 nm (emission). Peak identification: 1, diphenyl oxide; and 2, biphenyl. For HPLC conditions see Figure 4.3.</td>
<td>44</td>
</tr>
<tr>
<td>4.6</td>
<td>Changes in retention times of diphenyl oxide (■) and biphenyl (●) with respect to ratios of methanol and water mixture. Interfering fluorescent components labeled A (▲) and B (●) are indicated in Figure 4.7.</td>
<td>47</td>
</tr>
<tr>
<td>4.7</td>
<td>Stacked chromatograms of control blank samples of (a) fatty acid, (b) palm olein, (c) corn oil, (d) sunflower oils, and (e) fatty alcohol. No fluorescent components were observed at 6.6 min as indicated by an arrow that might interfere with the quantitation of biphenyl for the determination of Dowtherm A^{TM}. Labels A and B are interfering components present naturally in matrices. HPLC conditions: column, GL C18 250 x 4.6 mm i.d.; mobile phase, methanol and water (90:10, vol/vol); oven temperature, 40°C; and fluorescence detector, 247 nm (emission) and 310 nm (emission).</td>
<td>49</td>
</tr>
</tbody>
</table>
4.8 HPLC chromatograms showing samples spiked with 0.1 µg/g Dowtherm A™. (a) C₁₂₆ fatty acid, (b) C₁₂₀ fatty alcohol, (c) C₁₂ₐ methyl ester, (d) C₁₄ₐ fatty acid, (e) C₁₄₀ fatty alcohol, and (f) C₁₄₀ methyl ester. Diphenyl oxide eluted at 5.5 min and biphenyl, as indicated by an arrow, at 6.6 min. For HPLC conditions see Figure 4.7................................. 53

4.9 Partial hydrogenation pathways of terphenyls proposed by Scola et al.¹²⁰.. 58

4.10 Fluorescence excitation and emission spectra of (a) Therminol 66™, (b) o-, (c) m-, (d) p-terphenyl and (e) 1,4-dicyclohexylbenzene in tetrahydrofuran-methanol (50:50, vol/vol).. 60

4.11 Calibration graphs derived from o- (●), m- (■) and p-terphenyl (▲) solutions showing the linearity of the UV detector. r² was > 0.997. HPLC conditions: column, GL C₁₈ 250 x 4.6 mm i.d.; mobile phase, methanol and water (90:10, vol/vol); oven temperature, 40°C; and UV detector, 254 nm.............................. 61

4.12 HPLC chromatograms of (a) terphenyls and (b) Therminol 66™ solution. Peak identification: 1, o-; 2, m-; 3, p-terphenyl and 4, 3-; 5, 4-cyclohexylbiphenyl; and 6, 1,4-dicyclohexylbenzene. For HPLC conditions see Figure 4.11.. 62

4.13 HPLC fluorescence chromatograms of hydrogenation products of (a) o-, (b) m- and (c) p-terphenyl. The hydrogenation was carried out according to the procedure reported by Scola et al.¹²⁰. Peak identification: 1, 1,2-diphenylcyclohexane; 2, 2-cyclohexylbiphenyl; 3, m-terphenyl; 4, 3-cyclohexylbiphenyl; 5, p-terphenyl; 6, 4-cyclohexylbiphenyl; and 7, 1,4-dicyclohexylbenzene. HPLC conditions: column, GL C₁₈ 250 x 4.6 mm i.d.; mobile phase, methanol and water (90:10, vol/vol); oven temperature, 40°C; and fluorescence detector, 257 nm (excitation) and 320 nm (emission).............................. 64

4.14 HPLC fluorescence detection of Therminol 66™. Peak identification: 1, m-; 2, 3-cyclohexylbiphenyl; 3, 4-cyclohexylbiphenyl and 4, 1,4-dicyclohexylbenzene. HPLC conditions: column, GL C₁₈ 250 x 4.6 mm i.d.; mobile phase, methanol and water (88:12, vol/vol); oven temperature, 40°C; and fluorescence detector, 257 nm (excitation) and 320 nm (emission).. 65

4.15 Total ion chromatogram of Therminol 66™ from GC-MS. GC conditions: oven temperature, 150°C to 280°C at the rate of 10°C/min, and hold at 280°C for 20 min; injector, 280°C;
detector, 280°C; capillary column, 5% phenyl methylsiloxane 30 m x 0.32 mm i.d.; and helium flow, 0.8 mL/min.

4.16 Total ion chromatogram of 3- and 4-cyclohexylbiphenyl collected from HPLC. For GC conditions see Figure 4.15.

4.17 Mass spectra of 3-cyclohexylbiphenyl.

4.18 Mass spectra of 4-cyclohexylbiphenyl.

4.19 Calibration graphs derived by plotting peak areas of 3- (●) and 4-cyclohexylbiphenyl (□) against the concentrations of the Therminol 66™ over the range of 0.01-1 µg/mL. For HPLC conditions see Figure 4.14.

4.20 Stacked fluorescence chromatograms of spiked (a and b) C_{8,0} and (c and d) C_{10,0} with Therminol 66™ at 0.1 and 1.0 µg/g levels, respectively, showing the changes of elution times of 3- and 4-cyclohexylbiphenyls as indicated by arrows on different rations of mobile phase Chromatograms (a) and (c) were obtained with 90:10 (vol/vol) of methanol and water whereas chromatograms (b) and (d) were obtained with 88:10 (vol/vol) of methanol and water. For other HPLC conditions see Figure 4.14.

4.21 Fluorescence chromatograms of blank palm olein (a) before, (b) after saponification and (c) spiked palm olein with Therminol 66™ (1.0 µg/g) analyzed after saponification. Peaks labeled 1 to 4 were fluorescent components present naturally in palm olein, and peaks labeled 5 and 6 were 3- and 4-cyclohexylbiphenyl, respectively. For HPLC conditions see Figure 4.14.

4.22 Typical fluorescence chromatograms of (a) spiked glycerin with Therminol 66™ at 1.0 µg/g level, and (b) blank glycerin. Peak identification: 1, 3- and 2, 4-cyclohexylbiphenyl. For HPLC conditions see Figure 4.14.

4.23 Enlarged fluorescence chromatograms of blank and spiked (a) C_{8,0}, (b) C_{10,0}, (c) C_{12,0}, (d) C_{14,0}, (e) C_{16,0} and (f) C_{18,0} fatty acids with 0.1 µg/g Therminol 66™. Peak identification: 1, 3- and 2, 4-cyclohexylbiphenyl. For HPLC conditions see Figure 4.14.

4.24 Fluorescence chromatograms showing blank and spiked vegetable oils with Therminol 66™. (a) Sunflower oil was spiked at 0.1 µg/g level, (b) soybean oil and (c) canola oil were spiked at 0.2 µg/g level. Peak identification: 1, 3- and 2, 4-cyclohexylbiphenyl. For HPLC conditions see Figure 4.14.

4.25 Fluorescence excitation and emission spectra of Therminol 55™.
Typical HPLC chromatograms of Therminol 55™ analyzed using (a) UV detection at 262 nm, and (b) fluorescence detection at 270 nm (excitation) and 320 nm (emission). HPLC conditions: column, GL C18 250 x 4.6 mm i.d.; mobile phase, ethanol and water (95:5, vol/vol); oven temperature, 40°C.

Linearity of the calibration graphs derived from Therminol 55™ using (a) UV detection at 262 nm and (b) fluorescence detection at 270 nm (excitation) and 320 nm (emission). For HPLC conditions see Figure 4.26.

Elution profile of n-eicosane (●), o-terphenyl (■) and Therminol 55™ (▲) by column chromatography with 50 g alumina. Hexane was used as the mobile phase.

HPLC-UV chromatograms of blank and spiked basic oleochemicals with 50 µg/g Therminol 55™ (arrow) (a) Glycerin, (b) C12:0, (c) C14:0, (d) C16:0 and (e) C18:0 fatty acids. For HPLC conditions see Figure 4.26.

HPLC-fluorescence chromatograms of blank and spiked basic oleochemicals with 50 µg/g Therminol 55™ (arrow). (a) Glycerin, (b) C12:0, (c) C14:0, (d) C16:0 and (e) C18:0 fatty acids. For HPLC conditions see Figure 4.26.

HPLC-UV chromatograms of blank and spiked vegetable oils with 50 µg/g Therminol 55™. (a) Palm olein, (b) soybean oil, (c) sunflower oil, and (d) canola oil. For HPLC conditions see Figure 4.26.

HPLC-fluorescence chromatograms of blank and spiked vegetable oils with 50 µg/g Therminol 55™ (arrow) (a) Palm olein, (b) soybean oil, (c) sunflower oil, and (d) canola oil. For HPLC conditions see Figure 4.26.

GC-FID chromatogram of Therminol 55™

GC-FID chromatogram of blank palm olein

Enlarged GC-FID chromatograms of (a) blank and (b-d) spiked palm oleins with 20, 50 and 100 µg/g Therminol 55™, respectively.

GC-FID chromatograms of (a) soybean oil, (b) sunflower oil, and (c) canola oil spiked with 100 µg/g Therminol 55™.
Fluorescence excitation and emission spectra of diesel solution (1000 µg/mL) as supplied from local petrol stations................. 99

A typical total ion chromatogram of \(n \)-alkanes (-C) in diesel. Peak identification: \(a \), 1,2,3,4-tetrahydro-5-methylnaphthalene; \(b \), 1,4-dimethyl-1,2,3,4-tetrahydroanaphthalene; \(c \), 2-methylnaphthalene; \(d \), 1-methylnaphthalene; and \(e \), 1,7-dimethylnaphthalene. GC conditions: \textit{oven temperature}, 70°C for first 5 min, then programmed at 15°C/min to 280°C and hold at 280°C for 20 min; \textit{injector}, 250°C; \textit{detector}, 250°C; \textit{capillary column}, 5% phenyl methylsiloxane 30 m x 0.32 mm i.d.; and \textit{helium flow}, 0.8 mL/min... 100

Mass spectra of \(n \)-heptadecane, \(n \)-octadecane and \(n \)-nonadecane of diesel. For GC conditions see Figure 4.38................................. 101

Mass spectra of 1,2,3,4-tetrahydro-5-methylnaphthalene, 1,4-dimethyl-1,2,3,4-tetrahydroanaphthalene and 2-methylnaphthalene of diesel. For GC conditions see Figure 4.38................................. 102

Overlaid fluorescence chromatograms of diesel solutions analyzed using different ratios of acetonitrile (ACN), dichloromethane (DCM) and water (H₂O) mixture as mobile phase. (a) ACN:DCM; 50:50, (b) ACN:DCM; 70:30, (c) ACN; 100, and (d) ACN:H₂O; 70:30 (vol/vol). HPLC conditions: \textit{column}, GL C₁₈ 250 x 4.6 mm i.d.; \textit{oven temperature}, 30°C; and \textit{fluorescence detector}, 309 nm (excitation) and 344 nm (emission)... 104

Overlaid fluorescence chromatograms of (a) diesel solution, (b) blank and spiked saponified crude palm oil with (c) 50 µg/g and (d) 100 µg/g diesel. HPLC conditions: \textit{column}, GL C₁₈ 250 x 4.6 mm i.d.; \textit{mobile phase}; methanol and water (90:10, vol/vol); \textit{oven temperature}, 30°C; and \textit{fluorescence detector}, 309 nm (excitation) and 344 nm (emission)... 105

HPLC chromatograms of diesel solutions analyzed using excitation and emission wavelengths of (a) naphthalene; 268 nm and 321 nm, (b) diesel; 309 nm and 344 nm, (c) anthracene; 365 nm and 400 nm, and (d) benzene; 205 nm and 278 nm. Twenty µL diesel solution (1000 µg/mL) was injected. HPLC conditions: \textit{column}, Diol II 250 x 4.6 mm i.d.; \textit{mobile phase}, heptane and isopropanol (94:6, vol/vol); and \textit{oven temperature}, 30°C... 106

HPLC of blank crude palm oil analyzed using (a) ELSD showing that the oil is eluted completely; tri- (TG), di- (DG), and monoglyceride (MG) and free fatty acid (FFA), and (b)
fluorescence detection showing the presence of other fluorescent components in the oil. Peak identification: a, ester fraction, b-d and f, vitamin E isomers, and e and g, unknowns. HPLC conditions: column, Diol. II 250 x 4.6 mm i.d.; mobile phase, heptane and isopropanol (94:6, vol/vol); and oven temperature, 30°C.

4.45 HPLC chromatogram showing the presence of background fluorescent components in blank crude palm oil. Diesel was eluted slightly after the fluorescent components as demonstrated using spiked samples (50, 100, and 500 µg/g diesel). For HPLC conditions see Figure 4.44.

4.46 HPLC with fluorescence detection of spiked corn oil (1000 µg/g), groundnut oil (500 µg/g), palm olein (100 µg/g), and sunflower oil (50 µg/g). Crude palm oil was used as blank. For HPLC conditions see Figure 4.44.

4.47 HPLC with fluorescence detection of some commercial crude palm oil samples suspected to be contaminated with diesel. Diesel was observed at 3.10 min. For HPLC conditions see Figure 4.44.

4.48 A typical total ion chromatogram of blank crude palm oil. n-alkane (−C), and n-alkene (=C). For GC conditions see Figure 4.38.

4.49 A typical total ion chromatogram of crude palm oil suspected to be contaminated with diesel. n-alkane (−C), and n-alkene (=C). For GC conditions see Figure 4.38.
ABBREVIATIONS

AOAC Association of Official Analytical Chemists’ International
AOCS American Oil Chemists’ Society
CV Coefficient of variations
ECL Equivalent chain length
ELSD Evaporative light scattering detector
FAME Fatty acid methyl ester
FID Flame ionization detector
GC Gas chromatography
HPLC High-performance liquid chromatography
ISO International Organization for Standardization
IUPAC International Union of Pure and Applied Chemistry
LOD Limit of detection
LOQ Limit of quantitation
MIBK Methyl isobutyl ketone
MPOB Malaysian Palm Oil Board
MS Mass spectrometry
PAH Polycyclic aromatic hydrocarbon
PCB Polychlorinated biphenyl
PORLA Palm Oil Registration and Licensing Association
PORIM Palm Oil Research Institute of Malaysia
ρ^2 Correlation coefficient
RI Refractive index
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>TLC</td>
<td>Thin-layer chromatography</td>
</tr>
<tr>
<td>UV</td>
<td>Ultra-violet</td>
</tr>
<tr>
<td>VERNOF</td>
<td>Dutch Seed Crushers and Oil Processing Association</td>
</tr>
</tbody>
</table>